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ABSTRACT 

Textural components of soil play an essential role in erodibility and should be considered in many projects of conservation and 
environmental modeling processes. Traditional methods of determining soil texture are usually laborious, expensive and time 
consuming along with destructive effects on the environment. Meanwhile, spectroscopic technology using the spectral features and 
signatures from the whole reflected spectra of soil surface promises a competent method to study soil constituents. To investigate this 
issue, 113 points were selected and sampled randomly from 0-15 cm of soil surface in eastern parts of Mazandaran Province, Iran. 
Samples were haphazardly divided into 91 for model building and 22 for final verification and accuracy assessment processes. 
Applying the enhanced PLS-algorithm plus the FLOOCV approach along with spectral transformations and pre-processing, the 
modeling of each textural components were accomplished. Spectrally, sand and clay fractions were modeled with high accuracy as: 
R2

c= 0.89, RMSEc= 7.42, SEc= 7.46 for sand and R2
c= 0.82, RMSEc= 6.88, SEc= 6.92 for the clay content. Whereas, the silt 

predictive model was slightly weaker than the other constituents. The most effective spectral ranges involved in the modeling 
process, were also detected and recognized based on beta & spectral weight analyses and Marten’s uncertainty test. Additionally, the 
most influential spectroscopic ranges included were the visible, NIR and SWIR regions with the specified wavelengths. In general, 
the efficacy of spectroscopic technology in soil texture studies has been proven by this research. Using the computed spectral models, 
we are able to study the soil textural components at large scales faster, safer, timelier and also cheaper. That is absolutely true and 
applicable using the regionalized remotely sensed data but requires further investigation in different geographical regions.    
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List of abbreviations  

ANOVA Analysis of variance PLS/PLSR 
Partial Least Squares/Partial Least Squares 
Regression algorithm 

ASD-FieldSpec III  
Analytical Spectral Device 
FieldSpec3 

PMs Parent Material(s) 

ATR Attenuated Total Reflectance spectra PSD Particle Size Distribution (soil constituents) 

BRDF 
Bidirectional Reflectance Distribution 
Function(s) 

R c/p/cv 
Correlation coefficient for 
calibration/prediction/cross-validation 
subsets 

CHRIS-PROBA 
sensor 

The Compact High-Resolution 
Imaging Spectrometer (CHRIS) 
onboard the Project for On-Board 
Autonomy (PROBA) satellite sensor 

R2 c/p/cv 
Coefficient of determination for 
calibration/prediction/cross-validation 
subsets 

CV Coefficient of variation (%) RMSE c/p/cv 
Root mean square error for 
calibration/prediction/cross-validation 
subsets 

CR method Continuum Removal method RPD c/p 
Ratio of Performance to Deviation or 
Residual Prediction Deviation 
calibration/prediction subsets 
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CV(s)/FCV 
Cross Validation(s)/ Full-Cross 
Validation algorithm 

RPIQ c/p 
Ratio of Performance to InterQuartile 
distance calibration/prediction subsets 

D-transformation Derivative transformation algorithm SE c/p 
Standard Error for calibration/prediction 
subsets 

GPS Global Positioning System 
SG-
Filter/Algorithm 

Savitzky-Golay Filtering Algorithm 

IFt Influence test SNR Signal-to-Noise Ratio 

LDRS 
Lab Diffuse Reflectance 
Spectroscopy 

SMR Soil Moisture Regime 

FOV Field of View SOM Soil Organic Matter 

FLOOCV/LOOCV 
Full-Leave-One-Out-Cross-
Validation/Leave-One-Out-Cross-
Validation 

SSRC(s) Soil Spectral Reflectance Curve(s) 

KS Kolmogorov-Smirnov test STR Soil Temperature Regime 

LV(s)/LF(s) Latent Vector(s)/Latent Factor(s) VNIR-MIR Visible-Near Infrared-Middle Infrared 

MIVIS sensor 
Multispectral Infrared and Visible 
Imaging Spectrometer sensor 

VNIR-
DRS/VNIRS 

Visible-Near Infrared-Diffuse Reflectance 
Spectroscopy/Visible-Near Infrared 
Spectroscopy Technology 

mm/nm Millimeter/Nanometer VOI Variable of Interest  

MLR Multiple Linear Regression 
UV-Vis-NIR-
SWIR 

Ultraviolet-Visible-Near Infrared-Short 
Wave Infrared hyperspectral ranges 

PC(s)R/PCA 
Principal Component (s) 
Regression/Principal Component 
Analysis 

  

 

1. Introduction 

Soil textural fractions play essential and fundamental 
roles in a wide range of soil properties and processes. In 
other words, soil textural components are interconnected 
with other soil characteristics and strongly influence 
them. For instance, textural components directly affect 
the formation of aggregates and soil structural attributes. 
Hence, it should be taken into accounts in many plans 
and projects of soil erosional management, conservation, 
and environmental modeling. Also it is very important in 
decision making polices for soil productivity, 
environmental support and sustained management of 
agriculture (Qi et al., 2018). Particularly soil textural 
components play an influential and essential role in soil 
conservation especially in areas prone to all types of soil 
erosion (Ostovari et al., 2018). However, determination 
of soil forming components using the conventional 
laboratory methods is normally pricey, tiresome, time-
consuming and destructive to the environment, 
particularly at large scales (Bahrami et al., 2022; Peng et 

al., 2020). Hence, an agile, comfortable and high-
accurate approach to study this soil characteristic is 
urgently required. The high-tech approach of working 
with reflected spectra such as spectroscopy is usually 
quick, inexpensive, simply repeatable, minimal need to 
sample pretreatment, and without environmental 
disturbance (Peng et al., 2020; Zhao et al., 2020;). Then, 
this state-of-the-art approach has increasingly become 
popular as is nondestructive, straightforward, timely and 
cost-effective (Ji et al., 2016; Xu et al., 2018ab). This 
technology can be a supplement or substitute for 
conventional soil characterization approaches as well. 
The spectral reflectance curve is a fingerprint for each 
soil which is calculated and plotted using the 
spectroscopic device (Danesh et al., 2022). Accordingly, 
spectral features and signatures contained in the reflected 
spectra can be related to the soil characteristics such as 
soil particle composition (Ostovari et al., 2018; Padarian 
et al., 2019; Xu et al., 2018ab). The techniques of 
spectroscopy are likewise well-structured to be used as 
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handheld or portable in a field. As a rule, spectroscopy is 
the exploration of the interaction of soil materials with 
incident light in a specific spectral range. This 
technology takes advantage of combinations and 
overtones of fundamental vibrations from molecular 
spectral absorption in the region of MIR (Mura et al., 
2019). Combinations and overtones spectrally occur in 
NIR-SWIR region which is related to the vibrational 
modes of structural groups and bonds such as -CH, -OH 
and -NH (Mura et al., 2019). Mathematically, various 
spectral models have been used to make connections 
between soil properties and spectral data. They all intend 
to explore more precise information about the soil 
forming components (Hong et al., 2019). Among them, 
the PLS algorithm is common and widely used which has 
also strong multi-component analytical approach, 
because it can cope with the multi-collinearity errors and 
handle highly dimensional spectral data (Guo et al., 
2019; Peng et al., 2020). The ability of predicting soil 
properties such as SOM, clay minerals, moisture, etc. 
using spectroscopy technology has been reported in some 
studies (Danesh and Bahrami, 2022; Danesh et al., 2022; 
Xia et al., 2015; Xu et al., 2018). It is of great 
importance that some soil characteristics can be 
investigated simultaneously applying a single scanning 
by spectroscopic device. Xu et al., (2018 ab) assessed 
important properties related to the Soil Taxonomy in 
China using vis-NIR spectroscopic technology. 
Altogether, this spectral reflectance sensing method is 
seen as an influential substitute to prevalent lab analyses 
while it can examine several properties synchronously (Ji 
et al., 2014; Viscarra Rossel and Webster, 2012; Xu et 
al., 2018). Some major soil properties have been 
modeled using vis-NIR technology integrated with the 
PLS algorithm and the performance was evaluated as 
satisfactory (Peng et al., 2020; Pudełko and Chodak, 
2020). However, recently, further investigation on the 
mentioned approach has been the focus of the studies. 
Tumsavas et al., (2018) examined the efficiency of vis-
NIR technology for assessment of soil texture 
components in Turkey. The regression coefficient (R2) 
and RPD index for modeling of soil fractions were 
satisfactory and relatively high. Peng et al., (2020) 
compared the methods of predicting soil properties using 
spectroscopy and resulted the good indices for spectral 
models for soil texture in China. Additionally, Danesh et 
al. (2022) and Bahrami et al. (2022) studied the 
capability of the vibrational reflectance spectroscopy to 
detect spectral signatures and behaviors of texture 
components in Iran with acceptable model parameters. 
Regarding the prediction of soil textural components, it 
has become a major trend to find quick, efficacious and 
uncomplicated methods. The present study intends to 
examine the applicability of spectroscopic technology in 
characterization of soil texture in eastern parts of 
Mazandaran, Iran. Hence, the objectives were: (1) 
studying the applicability of spectroscopic technology in 

determining soil textural fractions, and (2) assessing the 
accuracy of analytical chemometric approach using the 
reflected spectra.  
 
2. Materials and Methods 
2.1. The study area 

Totally, 113 compound samples were collected from soil 
surface of 0-15 cm in eastern parts of Mazandaran 
Province, Iran. The dominant land uses were as forest 
(natural and manmade), cultivated and agricultural land, 
orchard and urban, the places of  which were between 
Qa’em-Shahr (36° 28' 6.24" N, 52° 51' 48.24" E) to Beh-
Shahr (36° 41' 43.08" N, 53° 32' 11.4" E) with an 
approximate area of 5788 km2 and altitude -27 m to +32 
m above-sea-level. The region has respectively mean 
annual temperature and precipitation of 15 °C and 789.2 
mm, with predominantly the Xeric and Thermic 
conditions, referred by STRs and SMRs (Emadi et al., 
2020). Soil samples were gathered randomly. The 
distribution and location of the sample points are shown 
in Fig. 1.   
 
2.2. Soil lab 

In the soil lab, the air-dried samples were crushed and the 
clods were powdered, then passed through a 2 mm sieve. 
The textural components were analyzed and determined 
using the hydrometric method (Camargo et al., 2009). 
The textural classes of soil samples based on the soil 
texture triangle are shown in Fig. 2.    
 
2.3. Spectral lab 

Spectroscopic operation was fulfilled in the standard dark 
room (no stray light) using an ASD-FieldSpec III. The 
absolute reflectance of samples recorded in the range of 
350-2500 nm and 1 nm spectral resolution which resulted 
in 2151 spectral data-points per sample. About 10 g of 
the dried samples used for spectral analyses. Soil 
reflectance spectra were scanned via fiber-optic cable 
with FOV of 25° (no fore-optic). The normalization of 
the spectra was performed using the white reference 
panel of Spectralon. Generally, a standard arrangement 
of the spectral lab was used for all assays with the 
distance about 10 cm above soil specimens. In addition, a 
150 Watts halogen bulb was used as a light source.   
 
2.4. Spectral preprocessing and analysis  

The spectral conversions and preprocessings were done 
to minimize or omit the disturbing effects and improve 
the spectra quality. For this purpose, spectral averaging, 
smoothing and derivations (1st & 2nd) were performed 
after reviewing the collected spectra. Accordingly, the 
raw spectra (Fig. 3A) were averaged per 10 nm spectral 
range (Fig. 3B) and the independent parameters reached 
216 spectral data-points. The transformations such as 
Savitzky-Golay (SGF) smoothing (Fig. 3C), first and 
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Fig. 1. Location of the sampled points in the eastern parts of Mazandaran Province, Iran. 

 

 

 
Fig. 2. Soil textural classes of the sampled points in eastern parts of Mazandaran Province, Iran. 

 

second derivatives (1st & 2nd -D) and mean-centering 
conversion were also processed on the raw reflected 
spectra (Fig. 3D-F). The full cross validation (FCV) 

algorithm was also done to choose the best spectral 
transformation and preprocessings (Casa et al., 2013). 
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Fig. 3. Spectral conversions and pre-processing, A) raw spectra, B) reduced spectra, C) smoothed with SG filter, D) transformed 
based on 1st-derivative algorithm and E) transformed based on 2nd-derivative algorithm. 

 

2.5. Spectral-statistical approach 

There are different chemometric approaches to extract 
information from soil reflected spectra. All of these 
chemometric approaches aim to connect the reflected 
spectra to the soil properties of interest (Hong et al., 
2019). The Partial Least Squares Regression (PLSR) 
algorithm which was adopted and utilized in this 
research, is one of the most and best of them which is 
widely utilized (Zhao et al., 2020). This algorithm with a 
vigorous approach due to availing the benefits of MLR 

and PCA arithmetic procedures together, yielding 
uniform and precise results for a wide range of soils.  
 
3. Results and Discussion  
3.1. Statistical properties of soil textural components  

According to the descriptive statistics for textural components 
of sampled points, the sand fraction showed the means: 
37.3%, range: 80.7% and CV about 60.2 %. For clay fraction, 
they were: 23.6%, 57.3% and 67.2%. Also, for silt contents 
they were: 39.1, 53.3 and 33.4%, respectively (Table 1). 

A 

B 
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Fig. 3. (continued)  

 

3.2. Modeling process 

First, the total samples were haphazardly divided into 
two groups: 91 for modeling process and 22 for final 
evaluation and accuracy assessment. In addition, the 
similarity assays such as KS, Student’s t and Levene’s 
tests were performed between two groups which 
respectively showed the similarity of normality, means 
and variances in both groups. The full leave one out cross 
validation (FLOOCV) calibration approach was selected 
as the best technique to get the optimum number of latent 
factors/latent vectors (LF/LV). On the other hand, it can 
manage high CV’s of parameters and minimize the multi-

collinearity and autocorrelation errors between predictors 
and responses (Guo et al., 2019). As an important stage 
in the modeling operation, the scoring process was done 
to concentrate the variances and reduce the similarities 
between predictors and responses. Therefore, the first 2 
LFs centralized 98% of spectral data and 74% of soil data 
individually (Fig. 4A). Accordingly, the process of PCA 
was based on the 7 final latent factors (LF) as a default. 
FLOOCV technique found the best PCs/LFs for each soil 
component. This advanced analytical approach is used to 
avoid the under- or over-prediction of dependent 
variables (Lu et al., 2013). Based on the regression 
coefficient (R2

CV), root mean square of error (RMSECV) 

C 

D 
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Fig. 3. (continued) 

 

Table 1. The descriptive statistics of soil textural components in the study area. 

CV% Range  SD  Median  Mean  Kurtosis  Skewness  Max  Min  VOI  

60.2  80.7  22.44  32  37.26  -0.83  0.45  82.7  2  Sand  

67.2 57.30 15.87 19.2 23.6 -0.64 0.65 58.5 1.2 Clay 

33.4 53.30 13.07 39 39.13 -0.85 0.053 68 14.7 Silt 

 

and correlation coefficient (Rcv), the best LFs/PCs for 
textural components were determined as follows: 6 LFs 
for sand component, 7 LFs for clay component and 6 LFs 
for silt component (Fig. 4A -K). The IFt, Hotelling T2 and 
Adjusted Leverage (ALT) tests also showed the 
participation of more than 92% of spectral and soil 
samples together in building the final model (Fig. 4E). 
The leverage was automatically set and then the 
heterogeneity of spectral data was investigated (Fig. 4-
R,S). The effective wavelengths and spectral domains 
were characterized via assays consisting of beta & 
spectral weight analyses and Marten’s uncertainty tests 
(Fig. 4L-Q). Therefore, the best effective wavebands 
contributing in estimation of soil texture components 
were well-defined. In the eastern parts of Mazandaran 
soils, the spectral ranges of visible, NIR and SWIR were 
recognized to be influential in studying soil texture (Fig. 
4L -Q). The next step was dedicated to modeling the final 
calibrated relationship between constituents (LFs) and 
spectral data (Fig. 5A-C). At the same time, checking the 
residuals related to the soil and spectra data via IFt 
(influence test) has proved the effectiveness of the 
model. Final predictive model for each components was 
calibrated using PLS algorithm along with the FLOOCV 
technique with specified indices as follows for sand 

fraction: Rc= 0.94, R2
c= 0.89, RMSEc = 7.42 and SEc = 

7.46; for clay fraction: Rc= 0.90, R2
c= 0.82, RMSEc = 

6.88 and SEc = 6.92; and for silt component: Rc= 0.62, 
R2

c= 0.39, RMSEc = 10.21 and SEc = 10.27. As stated 
earlier, the finalized calibrated models for sand and silt 
were based on 6 LFs and for clay, the model was based 
on 7 LFs. Also, the specifications of each model are 
presented in the box of Fig. 5A-C. The accuracy and 
quality of the calibrated models were computed by taking 
advantage of the indicants of model accuracy, RPD and 
RPIQ (Bellon-Maurel et al., 2010; Chang and Laird, 
2002). Therefore, the quality and efficiency of calibrated 
model were as the following: for sand fraction, RPDc = 
3.08, RPIQc = 4.81, for clay fraction, RPDc = 2.36, 
RPIQc = 3.46 and for silt fraction, RPDc = 1.29 and 
RPIQc = 2, respectively. Also, the maximum correlations 
between the textural constituents and the spectral 
domains were calculated applying the multi-component 
approach (Fig. 4L-Q). Correspondingly, they are as the 
following: for sand: visible-610 nm (0.75), NIR-970 nm 
(0.81) and SWIR-2200 nm (0.92), for clay: visible-550 
nm (-0.63), NIR-950 nm (-0.80) and SWIR-2000-2400 
nm (088-0.89). As for silt: visible-470 nm (-0.39), NIR-
1040 nm (-0.50) and SWIR-1910-2220 nm (-0.51 to -
0.53) (Fig. 4L-Q). Consequently, the selected spectral 

E 
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Fig. 4. Outputs of PLSR algorithm in brief, A) analysis of principle components (scoring process) based on soil components and 
spectral data; B,C,D) FLOOCV-auto-selection of LFs/LVs based on RMSE analyses for sand, clay and silt fraction, respectively; E) 
influence test on residuals and leverage to prove the effectiveness of predictors and response; F,G,H) predicted and reference 
amounts of sand, clay and silt, respectively, on the basis of choice LFs in calibration-FLOOCV approach; I,J,K) predicted 
components vs checking out the reference amounts for sand, clay and silt, correspondingly; L,M,N) results of Marten’s uncertainty 
test, weighted beta coefficients and analysis of regression coefficients (Single-Beta) to detect and define the most influential spectral 
ranges, wavebands and zero-effect wavelengths for sand, clay and silt; O,P,Q) characterization of effective wavelengths according to 
X-loading weight analysis for sand, clay and silt, respectively; R) residual sample calibration variance for response data; S) the final 
leverages according to LFs and samples in modeling process. 
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Fig. 4. (continued) 
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Fig. 4. (continued) 
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Fig. 5. A, B, C) Outputs of fully described finalized model with the relevant parameters after checking all items, according to the 
specific LF/LV for sand, clay and silt fractions, respectively. 

 

domains and wavebands with highest correlations show 
the best effects of reflected spectra in the modeling of 
textural components in the soils of the studied region. 
Unquestionably, in this research, the vibrational reflected 
spectra of the soil surface contain the valuable 
information about the soil constituents of Mazandaran 
province, Iran.    
 

3.3. Assessment of model accuracy 

The validation and verification steps of the calibrated 
models were fulfilled using 22 independent soil samples. 
For this, the finalized calibrated models for each textural 
component were utilized to predict just the same case in 
the validation group samples. Accordingly, the built 
models for sand, clay and silt fractions based on 6, 7 and 
6 LFs, respectively, were prepared for validation process. 
The predicted soil components using this step were 
compared to the reference values of the independent 

samples (Fig. 6A-C). Then, the accuracy and precision of 
each of the models were appraised (Fig. 7A-D). 
Scientifically, the parsimonious models based on the 
fewer LFs/LVs/PCs are preferred (Figs. 6 and 7). Hence, 
the validation process set the models free to choose the 
best and less number of LFs for each textural component 
(Danesh and Bahrami, 2022). 
 Figures 6 and 7 represent the predicted vs measured 
values for soil texture fractions using the finalized model 
for independent samples. Therefore, the sand model was 
assessed with: correlation coefficient (Rp) = 0.88, 
regression coefficient (R2p) = 077, RMSEp = 10.23 and 
SEp = 10.09. The clay model also was validated with: Rp 
= 0.83, R2p = 0.69, RMSEp = 7.99 and SEp = 8.26. Also 
the silt model was verified as: Rp = 0.49, R2p = 0.24, 
RMSEp = 11.37 and SEp = 12.20. In addition, the 
prediction process with deviations demonstrated in Fig. 
7A-D diagrammatically. Figure 7D shows the leverage 

A 

B 

C 
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Fig. 6. The final verification and accuracy assessment of models in accordance with the independent samples for A) sand, B) clay 
and C) silt fractions. (All modeled relationships are based on the FLOOCV-PLS-algorithm). 

 

values based on the principal components involved in the 
model assessment. As an estimation, according to the 
prediction process of soil components, their deviations 
and the involved leverages (Figs. 6 and 7), it can be 
concluded that the modeling processes were definitely 
acceptable and well-structured. Computationally, the 
efficiency and quality of the models were evaluated using 
two model robustness factor named RPDp and RPIQp. 
Therefore, the models were qualified for sand with 
specifications including: RPDp = 2.05, RPIQp = 2.79; for 
clay: RPDp = 1.83, RPIQp = 2.78, and finally for silt: 
RPDp = 1.15 and RPIQp = 1.98. The prediction ability 
for soil properties can be divided into three categories 
based on the RPD/RPIQ values. Generally, if the indices 
of the model are (calibrating/validating step) > 2.0, the 
model is Grade A, indicating a very good and precise 
prediction of soil characteristics. If it is between 1.4 and 
2.0, the model is classified as Grade B, suggesting that 

the model ability of prediction and its efficiency to be 
acceptable to good. If it is < 1.4, the model is Grade C, 
indicating the insufficiency and inappropriateness of the 
model power to predict the properties (Chang and Laird, 
2002). According to the results in the model building and 
evaluation steps, the sand model in the calibration step 
with calculated RPDc = 3.08 and RPIQc = 4.81 is very 
good and robust to predict this component in Mazandaran 
soils.  That was also proved in the evaluation process 
using independent samples with RPDp = 2.05 and RPIQp 
= 2.79. As compared to the results provided by Danesh 
and Bahrami (2022), and Bahrami et al. (2022), the 
current sand model has performed much better and more 
powerful. The clay model in the building stage with 
RPDc = 2.36 and RPIQc = 3.46 showed similar vigorous 
ability to assess this fraction. This was confirmed in the 
evaluation stage by RPDp = 1.83 and RPIQp = 2.78. 
Also, according to the model parameters and quality 

A 

B 
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Fig. 7. Predicted values with deviation for each sample in the validation step for: A) sand, B) clay and C) silt components; D) 

examining of leverage values for each LF in the validation samples. 
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indicators, the current clay model is more accurate, 
competent and reliable comparing to the research done 
by Danesh et al. (2016). But for silt fraction, the 
dedicated model performed relatively weaker in both 
steps like the calibration stage with RPDc = 1.29 and 
RPIQc = 2. Similarly, for the validation step with RPDp 
= 1.15 and RPIQp = 1.98, they were somewhat weaker 
but showed the acceptable to moderately weak prediction 
of this textural constituent. In the same way, the results 
for silt constituent were partly consistent with the study 
done by Danesh et al. (2022). In addition, Peng et al. 
(2020), studied soil texture fractions in China using 
spectroscopy and PLS enhanced algorithm. They were 
able to estimate sand fraction with R2 = 0.77, clay with 
R2 = 0.65 and silt with R2 = 0.71. Compared to their 
results, the present study was more effective and accurate 
in predicting sand and clay fractions, but not for silt 
fraction. Also Zhao et al. (2020) as well as Xu et al. 
(2018 ab) investigated clay particles with the similar 
model quality. The model built by Xu et al. (2018) was 
more accurate for silt constituents because of its 
appropriate CV% and variability range. Zeng et al. 
(2017) performed an investigation to predict the texture 
using vibrational technology and ten-fold cross-validated 
PLSR modelling approach. Their model parameters were 
as follows for clay: R2adj = 0.60, RMSEcv = 3.18 and 
RPD = 1.57 which was relatively weaker than the current 
clay predicting model. For silt component: R2adj = 0.78, 
RMSEcv = 10.20 and RPD = 2.11 that was more 
powerful and precise than the present silt model. Also for 
sand fraction, they reached R2adj = 0.78, RMSEcv = 
12.19 and RPD = 2.06 that was somewhat weaker than 
the results of our research. The reasons for the silt 
component model being weaker than other fractions are 
the low values of coefficient of variation (CV %) for silt 
besides the low variability range plus the kurtosis value 
of the VOI.  

 
4. Conclusions 

Comparing to traditional methods, the present research 
showed the applicability of spectroscopic technology to 
predict the components of soil texture more quick, 
timely, inexpensive, repeatable and nondestructive. This 
applied technology utilized spectral features in the whole 
reflected spectra. Definitely, the advanced approach 
composed of chemometric methods and VNIR 
technology made this study possible. Also, main spectral 
preprocessing and FLOOCV algorithm resulted in the 
precise and accurate models for each soil fraction. Also, 
using the quality and accuracy indicators of modeling 
processes, it was shown that the model efficiency and 
ability have been higher than some similar studies. 
Finally, it can be concluded that the spectral model for 
sand and clay components has performed excellently. But 
for the silt fraction, the model function was somewhat 
weaker compared to some relevant studies. This demands 

more samples from different geographical areas with 
more variation ranges to be taken. In addition, the 
influential spectral domains in prediction of soil texture 
were determined as visible, NIR and SWIR ranges. 
Applying these spectral ranges and wavelengths, gives 
the capability to study the soil textural characteristics at 
large scales using remotely sensed data. 
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