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ABSTRACT

Soil salinity is a property that varies in space and time. In pistachio orchards irrigated with saline and brackish water sources,
understanding the variability of soil salinity is crucial for managing irrigation and leaching practices. Excessive leaching leads to water
loss, while insufficient leaching results in salt accumulation in the soil, ultimately reducing water productivity. Traditional methods of
assessing soil salinity, which rely on sampling and laboratory analysis, are both time-consuming and costly for understanding this
temporal and spatial variability. Utilysing the remote and proximal sensing tools can reduce the time and cost of monitoring soil
salinity changes. This project was designed and executed to evaluate these methods in mapping soil salinity variations in the field and
for local scales. The proximal sensing indicators in this study included measuring the apparent electrical conductivity of the soil using
the EM38 device, as well as measuring the canopy diameter and the number of clusters on pistachio trees. Remote sensing indicators
included the mean digital numbers of Sentinel-2 satellite sensors and vegetation indices derived from them. Ground measurements
involved soil sampling from 25 points in a 75-hectare pistachio orchard in Khorasan Razavi Province, down to a depth of 90 cm at 30
cm intervals. Results showed that models using RS and PS indicators, both individually and in combination, could predict soil salinity
with statistically significant relationships (P < 0.01). However, the determination coefficients (R?) were relatively low, ranging from
0.26 to 0.56, indicating moderate predictive power. Among the methods tested, the Partial Least Squares Regression (PLSR) model
based on remote sensing variables was applied to predict salinity over a larger 4080-hectare area using a combination of Google Earth
Engine and R coding media. The Support Vector Machine (SVM) model yielded the highest mapping accuracy for interpolation (R? =
0.9, RMSE = 0.75 dS/m), demonstrating its relative effectiveness in spatially predicting soil salinity.

Keywords: Pistachio, Satellite imagery, Soil Salinity, Remote sensing, Proximal sensing, Machine learning.

1. Introduction of soil salinity across large areas, if not impossible can be
both time-consuming and costly. With the advancement of
technology, various tools for proximal sensing (like
EM38) and improvement of remote sensors have created
new opportunities to speed up such assessments and
reduce their costs.

Projections suggest that by 2050, over 50% of the
world’s arable land could become saline (Muhetaer et al.,
: . S : 2022). The extent and rate of salinity increase vary
and expensive soil rehabilitation efforts (Hassani et al., globally, with the most severely impacted regions found
2 020)', . . . in Asia, particularly China, Kazakhstan, and Iran, as well

’In irrigated agrlc.ultl}ral lands of Iran, V_mh f.'re'e nrf‘tur"fll as parts of Africa and Australia (Hassani et al., 2020; Gao
drainage, the most s1gmﬁcant cause of s.011 §alm12at10n is et al., 2022). However, due to the complex and dynamic
Fhe? us'e of highly saline wat'er for 1rr1gathn and poor nature of soil salinity, these estimates are largely
irrigation ma'm.age.ment, which are classified under empirical, making it difficult to generate a reliable global
secondary §a1m1;at1on factors. L . . inventory (Scudiero et al., 2014). In Iran, various estimates

Most pistachio orchards are irrigated using brackish, suggest that 30% to 50% of the country’s land area is

saline, or highly saline water, making soil salinity control affected by saline and sodic soils (Ghasemi et al., 1995;
in the root zone even more critical (Rahimian et al., 2019). Khorsandi et al., 2010; Moameni, 2010)

Repeated soil salinity measurements are needed to assure
if the leaching is sufficient for maintaining sustainable
production. However, frequent laboratory measurements

Soil salinization occurs due to two main factors: natural
processes (primary salinization) and human-induced
activities (secondary salinization). These processes
negatively affect soil quality, crop yields, hydrology,
geochemistry, and socio-economic conditions (Albed and
Kumar, 2013). Severe salinity can lead to long-term
challenges, including salt dust storms, poverty, migration,

Traditional methods of assessing soil salinity rely on
time-consuming and expensive laboratory analyses. To
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overcome these confines, alternative techniques, such as
geostatistics (Brunner et al., 2007), remote sensing
(Fourati et al., 2017; Ren et al., 2019; Dong et al., 2019;
Taghizadeh Mehrjardi et al., 2021), electromagnetic
induction (Iyer, et al., 2014), portable X-ray fluorescence
(PXRF) sensors (Yimer et al., 2022), and visible-near
infrared spectroscopy (Vis-NIR) (Wang et al., 2018,
2023), have been applied to predict soil salinity in
unsampled areas. The integration of digital soil mapping
(DSM) with machine learning techniques has further
expanded these applications (Peng et al., 2019).

Haq et al. (2023) employed five machine learning
models combined with RS data to predict soil salinity in
Pakistan, with the Random Forest model showing superior
accuracy. Similarly, Xiao et al. (2023) tested three
machine learning models—Random Forest, Support
Vector Machine, and Extreme Gradient Boosting—for
predicting soil salinity in northwest China. The Extreme
Gradient Boosting model outperformed the others,
highlighting the importance of selecting the right model
based on input data.

In northern Xinjiang, China, Zhao et al. (2024)
combined Partial Least Squares (PLS) Vis-NIR
spectroscopy and RS data to predict Electrical
Conductivity (EC) and Sodium Adsorption Ratio (SAR).
Their results showed that combining Vis-NIR data with
topographical features and Random Forest models
produced reliable predictions, offering insights for
identifying high-risk salinity areas and informing
management practices to mitigate degradation.

In a feasibility study, Zare et al. (2021) assessed three
methods—visible and near-infrared diffuse reflectance
spectroscopy (VisNIR DRS), portable X-ray fluorescence
spectroscopy (PXRF), and remote sensing (RS)—to
predict soil salinity in Texas salt flats. They found that
combining these three techniques significantly improved
predictive accuracy compared to individual methods,
making it a promising approach for rapid salinity
assessment.

Digital soil mapping accuracy is often constrained by
the limited availability of soil data. However, studies have
shown that increasing the spatial density of soil sampling
improves DSM model performance (Lagacherie et al.,
2021). Soil sensing technologies, including remote
sensing and proximal soil sensing, offer an alternative to
direct soil measurements, providing denser spatial data
under certain conditions.

Several technologies, including VIS-NIR-SWIR
spectroscopy, gamma spectroscopy, ground-penetrating
radar, and airborne hyperspectral imagery, have been
successfully used to estimate soil properties. Among
these, electromagnetic induction (EMI) has gained
popularity for mapping soil properties that influence
electrical conductivity, such as clay content, moisture, and
pH, making it particularly valuable for soil salinity
monitoring (Taghizadeh Mehrjardi et al., 2016).

Most studies using soil sensing as a sole data source

have not integrated it with prior knowledge of soil
distribution. However, incorporating soil sensing data into
digital soil mapping could enhance the accuracy of soil
property maps. Methods such as regression Kriging and
random forest algorithms have been used to integrate EMI
and environmental variables, resulting in improved soil
salinity assessments (Wang et al., 2021).

Wang et al. (2024) proposed a new framework that
integrates data from Sentinel-1 and Sentinel-2 satellites
with climate, topography, and machine learning
techniques to estimate soil salinity at a 10-meter
resolution. Field wvalidation in Iran and Xinjiang
demonstrated  significant accuracy  improvements
compared to previous salinity maps, offering a high-
quality foundation for soil property studies.

Remote sensing (RS) has become increasingly
important in evaluating soil salinity, with satellite sensors
offering higher temporal resolution and improved spatial
and spectral imagery. Platforms such as Google Earth
Engine (GEE) facilitate access to and analysis of satellite
images, enabling the creation of specialized products like
soil salinity change maps. For satellite-derived data
analysis, various machine learning (ML) methods have
been developed in both online systems and coding
environments, making it easier to explore complex
relationships between soil salinity and environmental
variables. Spatial modeling methods also allow for the
evaluation of models suited for salinity assessment,
helping identify the most appropriate approaches for
specific conditions. This research explores the hypothesis
that combining remote sensing, proximal sensing, and
spatial modeling techniques can produce a reliable model
for assessing salinity in pistachio orchards.

Some limitations remain while trying to predict soil
salinity in pistachio orchards using remote and proximal
sensing. First, despite referencing several studies on
salinity mapping, questions still persist regarding the
transferability of models developed at the orchard scale to
larger regional extents. Additionally, many referenced
works emphasize salinity detection under uniform or bare
soil conditions, whereas this study dealt with complex,
vegetated orchard systems, where canopy structure may
obscure salinity signals.

While previous studies have explored soil salinity
mapping using either remote sensing or proximal sensing
techniques independently, this study is among the few that
integrates both approaches in pistachio orchards, which
are often irrigated with brackish water. The research not
only evaluates the individual and combined predictive
power of EM38 measurements and Sentinel-2 derived
indices but also scales up the results using the Google
Earth Engine (GEE) and machine learning algorithms to
map soil salinity over a large area (4080 ha). The
integration of proximal sensing data, canopy indicators,
and satellite imagery into a unified machine learning
framework, and its operational application via GEE,
provides a practical and scalable model for precision
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Figure 1. The study area location, Khorasan Razavi Province (a), Baala Jovein County (b) the field area (c).

salinity management in perennial tree crops. This

combined approach, specifically validated in pistachio

systems of Iran, represents a novel methodology with high
relevance for sustainable salinity monitoring and decision-
making.

The main objectives of this study were:

(1) To evaluate the effectiveness of remote sensing
(Sentinel-2) and proximal sensing (EM38, canopy
diameter, and cluster count) indicators in predicting
soil salinity in pistachio orchards irrigated with saline
water;

(2) To develop and compare statistical and machine
learning models (e.g., PLSR and SVM) for soil salinity
prediction using individual and combined data
sources;

(3) To apply the most accurate model for large-scale
salinity mapping (over 4080 ha) using Google Earth
Engine (GEE) integrated with R programming.

2. Materials and Methods

For the implementation of this project, ground data was
collected from a commercial pistachio orchard with an
approximate area of 100 hectares in Jovein County,
Razavi Khorasan Province (36:25-36:50 N and 57:12-
5730 E). Figure 1 shows the location of this orchard in
Razavi Khorasan Province. The ground data included soil
sampling, down to a depth of 90 cm at intervals of 30 cm,
at 25 points (a total of 75 samples). The proximal-sensing
variables measured included the apparent soil electrical
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conductivity using the EM38 device at all 75 points in
summer, counting the number of clusters (75 trees), and
measuring the canopy diameters (of 75 trees). Remote
sensing variables included the digital number values of the
Sentinel-2 sensor's reflective spectrum from bands 2 to 9,
and the NDVI (Normalized Difference Vegetation Index)
was calculated (NDVI = (NIR-Red)/(NIR+Red)) from
Sentinel-2 images using the reflectance values from two
specific spectral bands: the Red band (B4) and the Near-
Infrared (NIR) band (BS8). To retrieve the RS data, the
values from April 1st to the end of September (year ??)
were extracted and downloaded using the Google Earth
Engine system.

After extracting the remote sensing values, the PLSR
method was used to model the relationships between
auxiliary variables and the measured soil salinity values,
and to validate the results. The best resulting model was
applied to generalize the results to a larger area.

To extend the results to a larger scale, land use types
were first classified using machine learning algorithms
available in the Google Earth Engine system, such as
Random Forest and Support Vector Machine. Based on
this classification, the boundaries of pistachio orchards in
the county were extracted and matched with the ground
truth. Then, using the same system, a sampling grid was
designed over the entire orchards, from which the
auxiliary variable values were determined for the desired
points. The best model from the previous step was applied
to the sampling points, and the soil salinity values were
extracted at those points.
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Figure 2. Flow chart illustration of methodology used in this research

Table 1. Analysis of Variance for PLSR of Proximal Sensing Data

Source DF SS MS F P
Regression 3 124.290 62.1448 24.64  0.000
Residual Error 14 52.956 2.5217
Total 17 177.246

In the next step, outliers were identified and removed
using the R scripts, and various interpolation methods
such as Inverse Distance Weighting (IDW), Regression
Kriging (RK), and Support Vector Machine (SVM) were
applied to the remaining data. These methods were used to
create soil salinity variation maps and validate the results.
Figure 2 summarizes the methodology used in this
research as a flow chart.

3. Results and Discussion
3.1. Estimation of Soil Salinity Using Only Proximal
Sensing

The auxiliary variables from proximal sensing, including
EM38 measurements, canopy diameter, and cluster count,
provided a good estimation of soil salinity, which was
significant at the 1% level. Table 1 shows the results of the
analysis of variance for estimating soil salinity using
proximal sensing data with the partial least squares
regression method. Based on this table, the model used is
significant at the 99% probability level.

Figure 3 shows the correlation between the mean
values of measured electrical conductivity of the saturated
extract and the estimated values from the partial least
squares regression (PLSR). Although this regression is
significant, in Minitab software, it is possible to re-
evaluate the regression relationships using the leave-one-
out (LOO) cross-validation (CV) method. In this method,

one point is left out, and the regression model is developed
for the remaining points, after which the left-out point is
estimated using this model.

Figure 4 shows the relationship between the measured
values and the cross-validation values. Based on this, the
regression does not have enough power in unknown points
and underestimates or overestimates soil salinity in about
65% of the cases.

Marino et al. (2019) reported in their assessment of
pistachio evapotranspiration under saline-sodic conditions
in California that since soil salinity significantly impacts
pistachio photosynthetic properties and light absorption,
these characteristics should be evaluated using remote and
proximal sensing variables. Corwin and Scudiero (2019)
concluded in a review that advances in proximal sensing
tools, such as electromagnetic induction, have enabled soil
salinity mapping from farm to regional scales.

3.2. Estimation of Soil Salinity Using Only Remote
Sensing

The auxiliary variables derived from remote sensing alone
could also estimate soil salinity well within the study
areaand at a 1% significance level. Table 2 shows the
analysis of variance for the partial least squares regression
in this stage.

Figure 5 shows the linear regression between the
measured soil salinity values and those estimated using
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Figure 4. Regression between measured and cross-validation soil salinity values

Table 2. Analysis of variance for PLSR of remote sensing data

Source DF SS MS F P
Regression 3 25.1540 8.38466 5.68 0.009
Residual Error 14 20.6629 1.47592
Total 17 45.8169

remote sensing auxiliary

variables. This regression combined with agro-hydrological models can be used to

improved compared to using only proximal sensing data, monitor soil salinity changes in pistachio orchards. By

but after cross-validation,
became weaker than before.

the regression (Figure 6) studying the time series of soil salinity changes using
supervised and unsupervised classifications of satellite

Shamsi et al., (2022) reported that Sentinel-2 images images around Lake Urmia, Delavar et al., (2020) found
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Figure 6. Regression between measured and cross-validation soil salinity values

that the extent of highly saline areas in the region
increased over a research period of approximately 40
years.

3.3. Estimation of soil salinity using both remote and
proximal sensing

In the next stage, soil salinity was estimated by integrating
remote and proximal sensing data. Table 3 shows the
analysis of variance for partial least squares regression to
estimate soil salinity using both remote and proximal
sensing data. Based on this table, the regression is
significant at the 1% level.

Figure 7 shows the linear regression between the

measured soil salinity values and the estimated values
using the combined auxiliary variables from remote and
proximal sensing. According to this figure, using both data
sources improved the linear regression for estimating
average soil salinity. However, this regression weakened
in cross-validation (Figure 8).

Although the analyses of variance (tables 1-3) showed
statistically significant relationships between actual and
predicted EC values (P < 0.01), the coefficients of
determination (R?) were relatively low (Figures 3-8),
indicating limited predictive power. These results suggest
that while the models can capture broad spatial trends in
soil salinity, they lack precision in estimating EC values at
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Table 3. Analysis of variance for PLSR of combined remote and proximal sensing data

Source DF SS MS F P
Regression 3 25.7365 8.57884 598  0.008
Residual Error 14 20.0804 1.43431
Total 17 45.8169
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Figure 7. Regression between measured and estimated soil salinity values from remote and proximal sensing
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Figure 8. Regression between measured and cross-validation soil salinity values

finer scales. The low R? values likely reflect factors such
as spatial variability within the orchard, measurement
uncertainty, and the limited sensitivity of remote sensing
variables to subtle salinity differences. Despite these
limitations, the models were applied at a broader scale to
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explore potential salinity distribution patterns across the
region. Therefore, the results should be interpreted with
caution, recognizing that they provide a general overview
rather than highly accurate point-level predictions. These
limitations are consistent with prior findings that



Hasheminejhad and Beyrami / DLSR, Vol. 1, No. 2, 2025

Table 4. Confusion matrix for different land uses.

Land Cover Barren Pistachio Urban  Fields River Classification accuracy
(%)
Barren 29 2 2 83
Pistachio 0 36 0 90
Urban 0 18 1 90
Fields 2 1 26 3 68
River 7 5 2 9 39

RS-based salinity predictions often have reduced accuracy
at fine spatial scales due to field variability, sensor
sensitivity, and the indirect relationship between spectral
signals and soil salinity (Allbed and Kumar, 2013).

According to the results, adding proximal sensing
variables to remote sensing variables created a stronger
linear regression. However, to generalize the method for
mapping on a larger scale, proximal sensing data are either
unavailable or difficult to measure and -calculate.
Therefore, for large-scale soil salinity mapping, the model
should rely solely on remote sensing data.

Tavares et al. (2024) used the integration of remote
sensing data and proximal sensing data from EM38 to map
soil salinity at the farm scale in a semi-arid region of
northeastern Brazil.

3.4. Large-Scale Soil Salinity Estimation

Before generalizing the model to a larger scale, the
boundaries of the pistachio orchards in the study area
needed to be determined. This is important because the
regression model created for predicting soil salinity is only
valid within the pistachio orchards. Therefore, remote
sensing data should only be extracted for pistachio orchard
areas for prediction purposes.

To this end, the Google Earth Engine (GEE) platform
was used. In this platform, besides the specific codes for
selecting and filtering satellite images and extracted
products, special codes for classifying images exist,
which, using machine learning algorithms like Random
Forest and Support Vector Machine and inputting training
points, can classify the area into defined land uses. The
script developed specifically for this project with the help
of generative Al, ChatGPT OpenAl, after classifying the
area into different land uses and evaluating the
classification accuracy, isolated the pistachio orchard
boundaries from all land uses, removed areas less than
1000 square meters, and finally saved the created shapefile
in Google Drive for further use. Figure 9 shows the
boundaries of pistachio orchards in the Balajovein region
of Jovein County delineated using this method.

The overall classification accuracy was 75.6%. This
means that the method used was able to correctly identify
land use in more than 75% of cases. The classification
error matrix is presented in Table 4. According to this

table, land use for pistachio and urban areas was estimated
with 90% accuracy, but riverbeds were estimated with the
lowest accuracy. In this project, the goal was to separate
pistachio-cultivated lands, which was successfully
achieved with good accuracy. The total area of pistachio-
cultivated land in the study area was estimated at 4,080
hectares, which, compared to the official statistics
reported by the county’s agricultural management office
of 4,300 hectares, had only about a 5% difference. Figure
10 shows that the script used correctly delineated the
boundaries of the studied orchard.

In the next step, a regular grid of 200 by 200 meters
was established over the study area. For the center points
of this grid, values of auxiliary remote sensing variables
were extracted and stored in a CSV file. Figure 11 shows
the location of the sampling points in the study area.

Using three variables—residual error X, residual error Y,
and leverage—the outliers were identified and removed.

Figure 12 shows a 3D plot of outlier detection using
this method, with outliers marked in red. Also, Figure 13
shows the position of outliers on the sampling points
distribution map.

After identifying and removing the outliers, the
relationships between the auxiliary variables were
examined. The highest correlation was observed between
the estimated soil salinity and band values 2, 3, 4, and 5,
and the average NDVI values for the months of April,
May, August, and September. The correlation matrix
between the variables is presented in Figure 14. Given the
correlations between the auxiliary variables, partial least
squares regression was deemed more suitable than
stepwise regression for estimating soil salinity. Therefore,
the partial least squares regression model extracted from
the studied orchard was used to estimate soil salinity
values at the sampling points.

The estimated soil salinity values obtained through
partial least squares regression were then interpolated
using various methods. Figures 15 to 17 show the
interpolation maps created using IDW, RK, and SVM
methods.

Table 5 shows the accuracy assessment of these three
methods for generating the soil salinity map. Based on this
assessment, the support vector machine method was
identified as the most suitable for interpolation and
creating the soil salinity map.

50



Integration of Remote and Proximal Sensing Techniques ...

Safiabad
Kalateh-ye i

N Aliabag SUls

(0)

. ‘Qﬁg

= ﬁ e kA/OQ
A e, 45,

d i Y
okmabad s Y ;‘
)b[pS)

]

SADRABAD

Sadr Abad
Ul e
Hojiat Abad
;| et
36.64°N -
36.62°N
36.60°N
i)
S
-% 36.58=N
-
36.56°N
36.54°N
36.52=NM
S7.60FE a7.65E a7.7OFE S7.TRE a7.80FE a7.85°E
[ ongitude

Figure 9. Pistachio orchard boundaries in Balajovein, Jovein County, delineated using GEE

51



Hasheminejhad and Beyrami / DLSR, Vol. 1, No. 2, 2025

Google EarthEngine @ sear

L -

[l sampling
i Soil Salinity of Iran
I Soil moisture

var geonetry
* war Barren: Featurecul]ectmn (35 elements)
* var Pistachic: FeatureCollection (48 elsmenis)
¥ ovar Ur FeatureCollection (20 ele ments)

F FeatureCollection (38 &'Ja”ents

W Tzghizadeh I-eatJr'eLol].ectmn (23 &

& UntitledrFile ar: Table users/youseths
. type: FeatureCol lection

B wosis id: users/yousefhal373/DadyarField

W yazd ve T 1727169263823018

b cersalse ¥ columns: Object (13 properties)

B datant Tproperties: Object (1 property)

B extractingpoints system:asset size: 18183

| PR TP - g

e TN - ' "
O % ~ w E gy ceomenyimpons

[ =
Hoseyn Abld
S ! fome ]

S i
Y ghir~

B : = e o
- - Meebardshoroar  Map data 82024 Gocgle | 500m Lo | Terma. Fepor &meo emor

oB 3

Get Link vI . Run I"H!‘ v_ Inipl:ler Conﬁelo Tasks
'olygon, 31 vertices

=List (5 elements)
ba: [29,2,8,2,2]
*1: [@,36,0,4,0]
k2 [@,8,18,1,1]
¥3: [2,6,1,26,3]
r4: [7,0,5,2,9]

overall accuracy 150
9.7564182564182564

Figure 10. Boundary delineation of the studied orchard using the machine learning method in GEE.

JE.64=N ‘

36.62°MN

36.60°M

alifude

35 Sa=p
-._J

36.56°N
36.54°N

36.52°N i

J7.60°E J7.65°E J7.T0PE S7T.75°E

Longitude

37.80°E

*  MNormal

*  Qutlier

J7.85°E

Figure 11. Regular sampling grid for extracting values of remote sensing variables.

52



53

Integration of Remote and Proximal Sensing Techniques ...

*
o *%
oy
L
=24
e @ L ]
2] :°
E w | o* .,
o
@ .
g <]
h-N
w4 10
=
T -5
-10
5—? t t t t t t -15
0.000 0.002 0004 0008 0008 0010 0.012 0014
| everage
Figure 12. Detection of outliers using residual and leverage values.
36.63
36.60
g
- 36.57
36.34

SF.6

L ongitude

S7.8

Figure 13. Location of outliers in the sampling points for remote sensing variables.

20

X Residuals

& MNorrral
» Outlier



Hasheminejhad and Beyrami / DLSR, Vol. 1, No. 2, 2025

1600 2000 3500 3500 1080 0.1
11111 1111 1111 1111 1111 LI
[— =
ec | |-040| |-042| |-050| |-048| |-027| |-025| |-023| |-025| |ooss| |-0s0| |-017| |0s8E
=
= i g2 | |o9s| |0ss| |oss| |oss| |o57| |os53| |os0o| |-037| |-020| |-035] |-050
=]
E 7| &5 | |os7| |os4| |o77| |07 |ose| |061| |041| |-012| |-028| |-044F o
=g
- i ?1 7 s | |o95| |o71| |oeo| |o57| |05¢| |036| |-014| |-032| |-05¢
S
oy
E m M A ss | |ose| |o74| |o7o| |o6s| |-040| Loosr| |-017| |-037E 2
=
= i m M m g0 | |o98| |095| |o96| |-049| |027| |24 | |0.085
G
{ @ -
[ g7 | |oss| |oss| |04s| |o39| |037| |o19F =
| | - 2
ey F s/, :
= - g5 | |098| |-048| |044| |043]| |02
g L 4 L 4
3
K AN WAV £
: ) : g | |047| |046| |044]| |025F =
kA 5
L]
&
{1 B b Ed FOLOTE| 0024 |0.076
§i S (W [V . kY
Tr LT rrri :
wovs| | pgt | (032 B
WEXY R Fyryy.
3] 3 Rl -wligs - a 1 4
SN rrEeE
e | (- : P |
L]
F? [~ =
- T =
0 20 2000 3000 3500 3500 0.1 0.1 08

Figure 14. Correlation matrix between the variables used.

Aksoy et al. (2022) reported that by using various machine
learning algorithms on the GEE platform and integrating
them with indices derived from satellite images, they were
able to monitor soil salinity changes along the margins of
Lake Urmia.

4. Conclusion

This study demonstrated the potential of using remote
sensing (RS) and proximal sensing (PS) indicators for
modeling and mapping soil salinity in pistachio orchards
irrigated with saline water. Although the relationships
between predicted and observed soil salinity were

statistically significant (P < 0.01), the coefficients of
determination (R?) ranged from 0.26 to 0.56, indicating
only moderate predictive accuracy across the models. The
integration of RS and PS indicators slightly improved
model performance compared to using either dataset
alone. Partial Least Squares Regression (PLSR) based on
remote sensing indices was successfully applied to upscale
salinity predictions over a 4080-hectare area using a
combination of R and the Google Earth Engine (GEE).
Among the modeling techniques tested, the Support
Vector Machine (SVM) method provided the highest
accuracy, with an R? of 0.90 and a Root Mean Square
Error (RMSE) of 0.75 dS/m, making it the most effective
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Table 5. Accuracy assessment of the three methods used for soil salinity interpolation.

Interpolaton Method RMSE (dS/m) MAE (dS/m) R?
IDW 1.11 0.86 0.48
RK 1.16 0.9 0.007
SVM 0.75 0.19 0.90

approach for generating a spatially detailed salinity map.
Despite the moderate predictive power at the field scale,
the integration of RS data offers a promising solution for
regional salinity monitoring, particularly where ground-
based measurements are limited. Future studies should
aim to improve prediction accuracy by incorporating
additional environmental covariates, higher-resolution
data, and more extensive field validation to better capture
the spatial heterogeneity of soil salinity.
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