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ABSTRACT 

Accurate prediction of soil potassium (K) fractions is critical for advancing precision nutrient management and promoting agricultural 

sustainability. This study aimed to develop artificial neural networks (ANNs) to predict multiple K fractions, including water-soluble, 

available (water-soluble + exchangeable), non-exchangeable, and total K prior to K amendment, and water-soluble, exchangeable, and 

fixed K following K amendment. Predictions were made using soil physicochemical properties such as clay, silt, sand, pH, organic 

carbon, cation exchange capacity, and electrical conductivity, along with measured exchangeable K and fertilizer-derived K. A 

comprehensive dataset, curated from peer-reviewed studies encompassing diverse global soils, served as the foundation for ANN 

development, ensuring broad applicability across different soil types and agroecological conditions.  Multilayer perceptron ANNs with 

varying architectures were systematically optimized in MATLAB software, yielding high-fidelity models with robust predictive 

performance (correlation coefficients: 0.91–0.99). The complexity of the ANNs was tailored to the chemical dynamics of each K 

fraction. Simple architectures (8-8-1) effectively captured the distributions of water-soluble and fixed K, while more intricate 

configurations (8-10-10-10-1) were requisite for accurately modeling total K due to its complex interactions with soil matrices. Model 

validation confirmed high accuracy and reliability, with minimal mean squared error across all predicted fractions. To bridge the gap 

between research and practical application, these ANNs were embedded into an open-source, Excel-based tool, enabling seamless 

prediction of K fractions through user-friendly inputs of soil properties and measured exchangeable K data. This tool empowers 

farmers, agronomists, and researchers to optimize K fertilization strategies, reduce nutrient waste, and enhance crop productivity. The 

tool is accessible for download at: https://drive.shahroodut.ac.ir/index.php/s/fayE0zUH16TQe2M  
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1. Introduction 

Potassium (K) is an essential macronutrient that plays a 

pivotal role in numerous physiological and biochemical 

processes in plants, including enzymatic activation, 

carbon and nitrogen metabolism, sugar translocation, 

protein synthesis, and photosynthetic efficiency (Xu et al., 

2020). In the context of precision agriculture, maintaining 

optimal K levels is crucial because even slight imbalances 

can disrupt the uptake of other key nutrients, such as 

magnesium (Tränkner et al., 2018), calcium, sodium, and 

nitrogen (Du et al., 2017; Hu et al., 2017), and ultimately 

compromise crop productivity. The bioavailability of K in 

soil is regulated by a complex equilibrium among water-

soluble, exchangeable, non-exchangeable, and structural 

pools, with each fraction governed by soil 

physicochemical attributes such as mineralogy, cation 

exchange capacity (CEC), texture, and organic carbon 

(OC) (Najafi-Ghiri and Abtahi, 2013).  

 Despite decades of research, the mechanisms 

governing K dynamics remain poorly characterized 

because of the nonlinear interactions between soil 

physicochemical properties and K fractions. Conventional 

statistical methodologies, such as correlation analyses and 

multiple linear regression (MLR) have been widely used 

to assess relationships among K pools and soil attributes. 

However, the weak to moderate correlation coefficients 

(r= 0.44-0.47) commonly reported highlight the inability 

of these linear approaches to capture the nonlinear and 

multifactorial interactions governing K dynamics (e.g., 

Najafi-Ghiri and Abtahi, 2013). Although subsequent 

studies employing MLR and path coefficient analysis 

(Wang et al., 2006; Zornoza et al., 2007) have sought to 

enhance predictive accuracy, the inherent assumption of 

linearity in these models limits their capacity to describe 

the complex and often nonlinear behavior of soil nutrient 

systems (Faraway, 2016). As a result, there remains a 

critical need for more sophisticated and flexible modeling 

frameworks capable of handling multivariate, nonlinear, 

and independent relationships among soil 

physicochemical variables. Developing such predictive 

tools is essential not only for advancing the theoretical 

understanding of soil K dynamics but also for improving 

site-specific fertilizer recommendations and reducing the 

environmental risks associated with nutrient over-

application. 

https://drive.shahroodut.ac.ir/index.php/s/fayE0zUH16TQe2M
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Table 1. Summary of soil samples and locations used in ANN analysis. 

Location and number of sites Soil depth for sample collection Reference 

15 sites in El-Dakhla soils, Egypt 0-30, 30-60 cm Awad et al. (2016) 

20 sites in Haveri district, Karnataka, India 0-20, 20-50 cm, Harsha and Jagadeesh (2017) 

14 sites in Fars Province, Iran 0-20 cm Sadri et al. (2016) 

6 sites in Kohgiluyeh and Boyer-Ahmad Province, Iran Various horizons (3–4 layers) Shakeri and Abtahi (2019) 

10 sites in Homs, Syria 0-20 cm Shamsham et al. (2019) 

9 sites in tobacco-growing soils of Gilan, Mazandaran, and Golestan 

Provinces, Iran 
Various horizons (5–7 layers) Gholizadeh et al. (2016) 

9 sites distributed across various regions from northern to southern 

Portugal 
0-20, 20-50, 15-35 cm Portela et al. (2019) 

16 sites distributed across northern sub-regions of India 0-30 cm Elbaalawy et al. (2016) 

 

In recent years, machine learning techniques, particularly 

artificial neural networks (ANNs), have emerged as 

powerful alternatives to conventional statistical models for 

predicting soil properties and nutrient availability. Owing 

to their capacity for nonlinear mapping and self-adaptive 

learning, ANNs have demonstrated notable success in a 

range of soil science applications, including nutrient 

evaluation (Li et al., 2014), estimation of available 

nitrogen, phosphorous and K (Wu et al., 2014) without 

accounting for the interrelationships among multiple K 

pools. Moreover, many of these studies have not provided 

explicit predictive equations or interpretable coefficient 

outputs, thereby constraining their application in 

operational nutrient management and decision-support 

systems. 

 In response to these knowledge gaps, this study aimed 

to develop and validate a suite of ANN models capable of 

accurately estimating the distribution of multiple K 

fractions, including water-soluble, available (water-

soluble + exchangeable), non-exchangeable, and total K 

prior to K amendment, and water-soluble, exchangeable, 

available, and fixed K following K amendment.  Beyond 

model development, the trained ANN models were 

embedded into an open-source, Excel-based tool 

constructed within the Visual Basic for Application 

(VBA) framework, ensuring accessibility and practical 

usability of agronomists, soil scientists, and land 

managers. This integration bridges the gap between 

advanced computational modeling and field-level 

decision-making, thereby enabling data-driven, precision-

oriented K management. The outcomes of this research are 

expected to contribute to a more comprehensive 

understanding of soil K dynamics, enhance fertilizer-use 

efficiency, and support the transition toward more 

sustainable and resilient agricultural systems. 

 The present study was guided by the following 

hypotheses: (1) ANNs can accurately predict multiple 

forms of soil K, using soil physicochemical properties and 

measured exchangeable K, (2) ANN-based approaches 

outperform traditional MLR models in predicting soil K 

fractions due to their superior ability to capture nonlinear 

interactions among soil parameters, and (3) the predictive 

performance of ANNs vary according to the chemical 

complexity of individual K fractions, with more complex 

fractions such as total K requiring deeper network 

architectures. 

 

2. Materials and Methods 
2.1. Dataset compilation 

The two datasets utilized in this study were extracted from 

peer-reviewed articles published in international journals 

prior to 2019 (Table 1). Dataset 1 included soil properties 

(clay, sand, silt, OC, CEC, EC, and pH), water-soluble K, 

exchangeable K, available K (water-soluble + 

exchangeable), non-exchangeable K, and total K. Dataset 

2 comprised the same soil properties, and initial water-

soluble K, except that EC was not reported. In addition, 

dataset 2 contained dose-response data describing the 

relationships between KCl application rates (0–400 

mg.kg-1) and the resulting distribution of K among water-

soluble, exchangeable, and fixed K forms. 

 Briefly, the authors listed in Table 1 determined 

particle size distribution using the hydrometer method and 

measured soil pH potentiometrically in a 1:2.5 soil: water 

suspension. The CEC measurement has been based on the 

ammonium acetate method at pH 7. Water-soluble K 

extracted with distilled water in a 1:5 (w/v) soil to water 

ratio, while exchangeable K extracted using 1 M 

ammonium acetate at pH 7. Non-exchangeable K 

quantified as the difference between K extracted by 

boiling nitric acid and the ammonium-acetate-extraction 

fraction, and total K determined following a complete 

digestion with a hydrofluoric acid mixture. Specifically, 

Portela et al. (2019) used a difference method to quantify 

fixed K, following the application of KCl at doses up to 

400 mg.kg-1. They derived fixed K using the following 

equation: 

Fixed K = (exchangeable K prior to K amendment +  

K amendment) – exchangeable K following 

K amendment                                 [1] 
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Fig. 1. A sample architecture of the artificial neural network model (ANN: 8-8-1) utilized to predict various fractions of soil K. As 

presented in Table 3, the ANNs implemented in this study vary in their input layer, number of hidden layers, number of nodes per 

hidden layer, and output layer. 

 

Generally, the selection of articles, listed in Table 1 was 

carried out through a rigorous screening process, ensuring 

that only studies with comprehensive and consistent 

reporting of K fractions and soil properties were included. 

This approach enabled the compilation of a dataset that: 

(i) encompassed a broad spectrum of environmental and 

edaphic conditions, capturing substantial variations in 

elevation (relative to sea level), agro-ecological 

characteristics, climatic factors, soil horizons and depths, 

slope gradients, and parent materials; and (ii) maintained 

methodological consistency, thereby facilitating robust 

comparative analyses.  

 

2.2. ANN models 

During the second phase of the investigation, the two 

datasets were employed to construct multilayer perceptron 

ANN models using MATLAB software. The ANN-based 

modeling of individual K fractions was necessitated by 

disparities in data availability and experimental design 

between the two compiled datasets. Consequently, the 

predictor variables for predicting K fractions prior to K 

amendment comprised clay, sand, silt, OC, CEC, EC, pH, 

and measured exchangeable K. For predicting K fractions 

following K amendment, the predictor variables were 

clay, sand, silt, OC, CEC, pH, initial water-soluble K, and 

fertilizer-derived K. Separate ANNs were developed for 

each target variable (K fraction). For the pre-amendment 

condition, these target variables were water-soluble, 

available (sum of water-soluble and exchangeable), non-

exchangeable, and total K. For the post-amendment 

condition, the target variables were fixed, water-soluble, 

exchangeable, and available K. Each K fraction was thus 

configured with a specific set of inputs and a single output 

corresponding to its target K fraction. 

 A representative ANN architecture was depicted in 

Fig. 1, showing distinct input layers for the soil variables 

and a single output layer for the predicted K fractions. A 

comprehensive summary of the input-output 

configurations for all developed models was provided in 

the flowchart in Fig. 2. The complete dataset was 

partitioned into training (70%), testing (15%), and 

validation (15%) subsets to evaluate the model robustness 

using unseen data. 

 To compare the predictive performances of ANN and 

MLR approaches, a separate MLR model was constructed 

for each target variable. The same set of predictors used as 

inputs for the ANNs (i.e., those represented in the input 

layer of Fig. 2) were used as independent variables in the 

MLRs, while the corresponding ANN output variables 

were designated as the dependent variables. The predictive 

efficacy of both ANN and MLR modeling approaches for 

the various K fractions was assessed using the correlation 

coefficient (r) between the predicted and observed K 

fractions, along with the mean absolute error (MAE) and 

root mean squared error (RMSE). Finally, the 

aforementioned ANNs were embedded into Excel-based 

tool using the Visual Basic for Applications (VBA) 

programming framework. The tool and VBA codes were 

presented as supplementary online material. 

 

3. Results 

The analysis of compiled data from published literature 

(Table 1) revealed a substantial heterogeneity in soil 

properties and K fractions, underscoring the diverse 

characteristics of the studied soils (Table 2). This diversity 

was immediately apparent in the soil texture, which spans 

the entire textural triangle, encompassing everything from 

coarse, sandy soils to heavy clays. Such a wide spectrum 

of textural classes inherently influence key soil processes 

like water retention. Furthermore, critical indicators of soil 

health and fertility—OC and CEC—also exhibited marked 

variability. This pronounced disparity suggests that the 

soil represented a wide range of management histories, 

climatic conditions and inherent fertility levels. Most 

critically for this study, the various K fractions 

demonstrated extensive variation. The wide ranges 

observed in water-soluble K, exchangeable K and total K 

(long-term reserve) highlight stark differences in both the  
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Fig. 2. Flowchart illustrating the prediction of various fractions of soil K using an Excel-based tool. The term “Added K” denotes the 

fertilizer-derived K input. Variation between the soil-property input layers (1 and 2) arises from constraints in the underlying 

datasets. 

 

immediate K availability for plants and the total K reserves 

locked within soil matrix. 

 The ANN models demonstrated markedly superior 

predictive performance compared with the MLR models 

across all soil K fractions evaluated (Table 3). For water-

soluble K prior to fertilization, the ANN model achieved 

a strong correlation between predicted and observed 

values (r = 0.984), markedly outperforming the MLR (r = 

0.780). This model also produced sustainably lower errors 

(MAE = 8.73 vs. 47.61; RMSE = 23.83 vs. 84.43) and 

exhibited robust training, testing, and validation 

performance (0.992, 0.941, and 0.949, respectively). 

Similarly, the ANN for non-exchangeable K prediction 

achieved a high total-set correlation with markedly 

reduced error relative to MLR and strong split-sample 

performance [training (70%), test (15%), and validation 

(15%)]. The models for other K fractions followed the 

same pattern, with the ANN yielding substantially higher 

accuracy and far lower prediction errors, highlighting the 

ANN’s advantage in modeling the complex interactions 

governing these fractions.  

 Following K amendment, ANN models again 

outperformed MLR across fixed, exchangeable, and 

water-soluble K fractions. Collectively, these results  
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Table 2. Summary of descriptive statistics for soil properties and K fractions used in the present study. 

Attributes Minimum Maximum Mean Range 

Clay (%) 3 68.7 35.85 65.7 

Sand (%) 4 97 50.5 93 

Silt (%) 0 60 30 60 

OC (%) 0 5.97 2.99 5.97 

CEC (cmol(+).kg-1) 0.6 62.56 31.58 61.96 

EC  (dS.m-1) 0.06 20.70 10.38 20.64 

pH 5.27 8.77 7.02 3.50 

Water-soluble K (mg.kg-1) 0 1332 666 1332 

Exchangeable K (mg.kg-1) 5.083 1368.8 686.942 1363.72 

Available K (water-soluble + exchangeable) K (mg.kg-1) 7 2700.8 1353.9 2693.8 

Non-exchangeable K (mg.kg-1) 11.1 4200 2105.55 4188.9 

Fixed K (mg.kg-1) 5 346 175.5 341 

Total K (mg.kg-1) 674 21806.1 11240 21132.1 

 

confirm that ANNs consistently captured the multivariate 

controls on soil K dynamics more effectively than MLR, 

producing higher correlations and substantially lower 

MAE and RMSE values across all K fractions.  

 The validation set performance consistently aligned 

with training and test results across all K fractions, 

demonstrating minimal overfitting. The close agreement 

among all three mentioned sets confirms that the models 

generalized effectively and are robust for predicting K 

dynamics beyond the data used for training. 

 

4. Discussions 

The substantial variability observed in the 

physicochemical properties and K fractions across the 

compiled dataset (Table 2) reveals the inherent 

heterogeneity of the studied soils and underscores the 

relevance of adopting ANN modeling approaches. The 

wide spectrum of textural classes fundamentally 

influences key soil processes such as water retention, 

aeration, and nutrient-holding capacity (Sparks, 1987). In 

particular, soils with higher clay content or greater 

proportion of 2:1 clay minerals (e.g. smectite, vermiculite) 

often exhibit greater capacity for K-fixation and buffering, 

whereas kaolinitic soils typically hold less inter-layer K 

and therefore lower total K reserves (Akbaş et al., 2017). 

 Similarly, the marked variability in soil OC and CEC 

across the dataset reflects a mixture of soils under differing 

management histories, climatic regimes, and parental 

material. High OC not only contributes to improved soil 

structure and moisture status but also influences nutrient 

metabolism and cation exchange processes, therefore 

affecting K availability (Six et al., 2002). As such, the 

wide disparity in OC and CEC signals soils with a broad 

range of fertility potentials and dynamic behavior (Weil 

and Brady, 2017). 

 Most critically for this study, the various K fractions 

exhibited extensive variation. The large ranges registered 

water-soluble K (the immediate available pool), 

exchangeable K (the short-term reserve) and total K (the 

long-term reserve/structural pool) highlight stark 

differences between soils in terms of both the immediate 

K supply to plants and the magnitude of K reserves locked 

in the mineral matrix (Sparks, 1987). These differences are 

further modulated by soil mineralogy: for instance, soils 

rich in feldspar or mica can possess significant non-

exchangeable K that becomes available only slowly 

(Moterle et al., 2019). 

 In fact, the concept of a “K-paradox” has been 

discussed in the literature; although soils may contain 

large total K reserves, the plant–available portion may 

remain low or inaccessible due to fixation or slow release 

from non-exchangeable forms (Sparks, 1987; Weil and 

Brady, 2017). This variability and heterogeneity are 

particularly advantageous for the development and 

implementation of ANN models. Because the ANN 

training dataset spans a broad array of soil conditions, 

physicochemical property values and K fraction 

distributions, the resulting models are better equipped to 

capture the complex nonlinear, and multidimensional 

interactions inherent in soil-K systems. This enhances the 

generalization capacity and reliability of the ANN models 

when applied across diverse environmental and 

agricultural contexts. This superior performance is 

quantitatively confirmed, with the ANN models achieving 

correlation coefficients between 0.91 and 0.99, and lower 

prediction errors (MAE and RMSE) substantially 

outperforming the MLR models. This result is consistent 

with previous studies where ANNs outperformed linear or 

simpler statistical models in soil-related studies (Mosleh 
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Table 3. Performance evaluation of the multilayer perceptron (MLP) artificial neural networks (ANNs) and multiple linear 

regression models (MLRs) for predicting different soil K fractions, as qualified by the correlation coefficient (r), mean absolute error 

(MAE), and root mean squared error (RMSE). Values in parentheses denote MLR performance for comparative assessment. 

@Network Identifier 
Network 

architecture 

*Training 

algorithm; 

sample size 

correlation coefficient (r) Axis titles of 

correlation 

charts 

#Correlation plot with performance 

metrics for total set 
Training 

subset 

Test 

subset 

Validation 

subset 

Inputs: Soil traits, 

exchangeable  K. 

Output: Water-soluble 

K prior to K 

amendment. 

MLP 

8-8-1 
LM; 177 0.992 0.941 0.949 

Predicted 

vs. 

observed 

soluble K 

(mg.kg-1) 

 
r = 0.984 (0.780); 

MAE = 8.73 (47.61); 

RMSE = 23.83 (84.43) 

Inputs: Soil traits, 

exchangeable  K. 

Output: Non-

exchangeable K prior 

to K amendment. 

MLP 

8-8-8-1 
LM; 177 0.973 0.891 0.909 

Predicted 

vs. 

observed 

non-

exchangeab

le K 

(mg.kg-1) 

 
r = 0.946 (0.725); 

MAE = 129.34 (311.39); 

RMSE = 197.24 (421.60) 

Inputs: Soil traits, 

exchangeable  K. 

Output: Total K prior 

to K amendment. 

MLP 

8-10-10-

10-1 

LM; 177 0.937 0.871 0.891 

Predicted 

vs. 

observed 

total K 

(mg.kg-1) 
 

r = 0.916 (0.431); 

MAE = 1300.50 (3519.03); 

RMSE = 2037.11 (4341.22) 

Inputs: Soil traits, 

initial water-soluble 

K, added K. 

Output: Fixed K 

following K 

amendment. 

MLP 

8-8-1 
LM; 54 0.991 0.968 0.994 

Predicted 

vs. 

observed 

fixed K 

(mg.kg-1) 
 

r = 0.987 (0.933); 

MAE = 11.04 (20.87); 

RMSE = 14.63 (31.44) 

Inputs: Soil traits, 

initial water-soluble 

K, added K. 

Output: Exchangeable  

K following K 

amendment. 

MLP 

8-8-1 
LM; 54 0.995 0.973 0.974 

Predicted 

vs. 

observed 

exchangeab

le K 

(mg.kg-1) 

 
r = 0.991 (0.874); 

MAE = 8.13 (28.76); 

RMSE = 10.80 (39.22) 

Inputs: Soil traits, 

initial water-soluble 

K, added K. 

Output: Water-soluble 

K following K 

amendment. 

MLP 

8-8-1 
LM; 54 0.975 0.981 0.961 

Predicted 

vs. 

observed 

soluble K 

(mg.kg-1) 
 

r = 0.990 (0.85); 

MAE = 1.97 (11.4); 

RMSE = 4.39 (16.68) 
@: The input variables for the model differed as dictated by available data. For predicting K fractions following fertilizer K application, the input 

layer consisted of soil properties such as clay, silt, sand, pH, OC, and CEC. In contrast, models for all other K fractions prior to fertilization 
additionally included EC. 

*: The Levenberg-Marquardt (LM) algorithm was employed as the optimization method in the training phase. The tangent sigmoid (TANSIG) and 
pure linear (PURELIN) transfer functions were used for the hidden and output layers, respectively. 

#: In the charts, the solid line represents the 1:1 reference line. 
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et al., 2016; Mozaffari et al., 2024; Pacci et al., 2024; Tang 

et al., 2009). 

 The superior performance of ANNs over MLRs in this 

setting can be attributed to two key factors. First, the 

dynamic of K fractions are driven by a network of highly 

interrelated variables, i.e. the studied soil physicochemical 

properties, which result in nonlinear system behaviors, 

such as the accelerated release of K from non-

exchangeable pools when exchangeable K falls below a 

specific level (Portela et al., 2019). Second, the ANN 

architectures were customized to capture this complexity. 

Easier-to-predict fractions were modeled with simpler 

structures (8-8-1), whereas the more complex non-

exchangeable K required a moderately deep network (8-8-

8-1), and total K, encompassing all pools, necessitated the 

most intricate design (8-10-10-10-1). This tiered 

complexity in network architecture reflects the gradation 

in soil processes, a principle observed in other nutrient 

modeling research (Li et al., 2014; Pacci et al., 2024). 

 From a mechanistic perspective, the high correlation 

between predicted and observed K fractions suggest that 

the models have implicitly captured key soil K dynamics. 

These dynamics include the exchange between solution 

and exchangeable pools, as well as the slow release of K 

from non-exchangeable interlayer sites in clay minerals 

and the weathering of K-bearing minerals such as mica 

and feldspar, processes often driven by soil acidification 

(Moterle et al., 2019). Furthermore, the models reflect the 

influence of soil texture and mineralogy, where a higher 

clay content enhances K buffering capacity. This reduces 

the rapid loss of exchangeable K but can also limit its 

immediate availability (Sparks, 1987). Finally, soil OC 

and CEC are represented as key modulating factors, 

influencing cation exchange equilibrium, K adsorption-

desorption dynamics, and root access to K (Palanivell et 

al., 2020). 

 In terms of practical implications, the techniques 

developed here (ANN-embedded Excel + VBA tool) offer 

a readily accessible and user-friendly means for field 

practitioners, agronomists and soil-fertility managers to 

estimate multiple K fractions using routine soil analytics 

(clay, silt, sand, pH, CEC, EC, exchangeable K, fertilizer-

derived K). This is valuable because conventional 

laboratory fractionation of K (water-soluble, 

exchangeable, non-exchangeable, and structural) is time-

consuming, costly and not widely available in many 

regions. The user tool therefore provides a cost-effective 

alternative for site-specific K-management decisions. 

Moreover, by enabling prediction of both immediate K 

supply (water-soluble, exchangeable) and longer-term 

reserve K (non-exchangeable, structural), the tool supports 

a more holistic K-fertility strategy, enabling optimization 

of fertilizer scheduling, avoiding over-application (and 

potential environmental loss) and enhancing soil fertility 

(Xu et al., 2020). 

 Nevertheless, despite the strength of the present 

modeling approach, the future research directions should 

be noted. First, while the input dataset covers a wide range 

of soils, it may still omit certain soil types (e.g., highly 

calcareous soils, organic soils, extreme weathered 

Ferralsols) or cropping systems (e.g., biochar 

amendments, regenerative agriculture) that alter K 

dynamics in non-standard ways. Second, although the 

model inputs include routine soil properties, key factors 

such as clay mineralogy, specific surface area and 

weathering indices (alkali–Kaolinization index and 

chemical index of alteration) are not directly represented, 

even though these factors strongly influence non-

exchangeable K (Zareian et al., 2018). Future models 

might integrate mineralogical or spectroscopic proxies 

(e.g., XRD-derived clay-mineral proportions of VIS-NIR 

spectra) to enhance predictive accuracy and mechanistic 

interpretability.   

 

5. Conclusion 

The results presented here demonstrate that ANNs provide 

a powerful and adaptable framework for predicting soil K 

fractions from readily measurable soil properties. By 

leveraging the intrinsic complexity and heterogeneity of 

soils, the developed models overcome many of the 

limitations of MLR, enable more accurate nutrient-

management decision-making and have strong potential 

for extension to other nutrients (e.g., N, P, Mg) and 

broader soil quality indices. As agriculture moves into the 

era of digital-soil-fertility management and precision 

nutrient application, such tools will be increasingly central 

to balancing productivity, environmental stewardship and 

resource sustainability.  

 

Supplementary Online Material 

The Excel-based tool is available at: 

https://drive.shahroodut.ac.ir/index.php/s/fayE0zUH16T

Qe2M  

The Visual Basic for Applications (VBA) codes (48 pages) 

for the Excel-based tool is available for download at: 

https://drive.shahroodut.ac.ir/index.php/s/PDvgtXC47zas

mdH  
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