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ABSTRACT

Accurate prediction of soil potassium (K) fractions is critical for advancing precision nutrient management and promoting agricultural
sustainability. This study aimed to develop artificial neural networks (ANNS) to predict multiple K fractions, including water-soluble,
available (water-soluble + exchangeable), non-exchangeable, and total K prior to K amendment, and water-soluble, exchangeable, and
fixed K following K amendment. Predictions were made using soil physicochemical properties such as clay, silt, sand, pH, organic
carbon, cation exchange capacity, and electrical conductivity, along with measured exchangeable K and fertilizer-derived K. A
comprehensive dataset, curated from peer-reviewed studies encompassing diverse global soils, served as the foundation for ANN
development, ensuring broad applicability across different soil types and agroecological conditions. Multilayer perceptron ANNs with
varying architectures were systematically optimized in MATLAB software, yielding high-fidelity models with robust predictive
performance (correlation coefficients: 0.91-0.99). The complexity of the ANNs was tailored to the chemical dynamics of each K
fraction. Simple architectures (8-8-1) effectively captured the distributions of water-soluble and fixed K, while more intricate
configurations (8-10-10-10-1) were requisite for accurately modeling total K due to its complex interactions with soil matrices. Model
validation confirmed high accuracy and reliability, with minimal mean squared error across all predicted fractions. To bridge the gap
between research and practical application, these ANNs were embedded into an open-source, Excel-based tool, enabling seamless
prediction of K fractions through user-friendly inputs of soil properties and measured exchangeable K data. This tool empowers
farmers, agronomists, and researchers to optimize K fertilization strategies, reduce nutrient waste, and enhance crop productivity. The
tool is accessible for download at: https://drive.shahroodut.ac.ir/index.php/s/fayE0zUH16TQe2M

Keywords: Excel-based tool, potassium fraction, precision agriculture, soil fertility.

1. Introduction statistical methodologies, such as correlation analyses and
multiple linear regression (MLR) have been widely used
to assess relationships among K pools and soil attributes.
However, the weak to moderate correlation coefficients
(r= 0.44-0.47) commonly reported highlight the inability
of these linear approaches to capture the nonlinear and
. : R multifactorial interactions governing K dynamics (e.g.,
2020). In the context of.precmon agrlcultu.re, malntalnlng Najafi-Ghiri and Abtahi, 2013). Although subsequent
Optlmé'll K levels is crucial because even shght imbalances studies employing MLR and path coefficient analysis
can disrupt the uptake of other key nutrients, such as (Wang et al., 2006; Zornoza et al., 2007) have sought to

magnesium (Trankner et .al., 2018), calcium, sodlqm, and enhance predictive accuracy, the inherent assumption of
nitrogen (Du et al., 2017; Hu et al., 2017), and ultimately ;0. iv in these models limits their capacity to describe

compromise crop productivity. The bioavailability of K in the complex and often nonlinear behavior of soil nutrient
soil is regulated by a complex equilibrium among water- systems (Faraway, 2016). As a result, there remains a
soluble, exghangeable, fon-ex changeable, and structurgl critical need for more sophisticated and flexible modeling
pool;, Wlth. each. fraction govgmed by S,Oﬂ frameworks capable of handling multivariate, nonlinear,
phys1cochemlca1. attributes such as mmeralogy, cation and independent relationships among soil
exchange. capacity (CEC), te.xture, and organic carbon physicochemical variables. Developing such predictive
(0C) (N?Jaﬁ_Ghlrl and Abtahi, 2013). i tools is essential not only for advancing the theoretical

Des.plte decades . of rese.arch, the mechan1§ms understanding of soil K dynamics but also for improving
governing K dynamics remain poorly characterized site-specific fertilizer recommendations and reducing the

becal'lse of ‘the nonlmpar mteracthns between . soil environmental risks associated with nutrient over-
physicochemical properties and K fractions. Conventional application

Potassium (K) is an essential macronutrient that plays a
pivotal role in numerous physiological and biochemical
processes in plants, including enzymatic activation,
carbon and nitrogen metabolism, sugar translocation,
protein synthesis, and photosynthetic efficiency (Xu et al.,
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Table 1. Summary of soil samples and locations used in ANN analysis.

Location and number of sites

Soil depth for sample collection Reference

15 sites in El-Dakhla soils, Egypt
20 sites in Haveri district, Karnataka, India
14 sites in Fars Province, Iran
6 sites in Kohgiluyeh and Boyer-Ahmad Province, Iran
10 sites in Homs, Syria

9 sites in tobacco-growing soils of Gilan, Mazandaran, and Golestan

Provinces, Iran

9 sites distributed across various regions from northern to southern
Portugal

16 sites distributed across northern sub-regions of India

0-30, 30-60 cm Awad et al. (2016)
0-20, 20-50 cm, Harsha and Jagadeesh (2017)
0-20 cm Sadri et al. (2016)
Various horizons (34 layers) Shakeri and Abtahi (2019)
0-20 cm Shamsham et al. (2019)

Various horizons (57 layers) Gholizadeh et al. (2016)

0-20, 20-50, 15-35 cm Portela et al. (2019)

0-30 cm Elbaalawy et al. (2016)

In recent years, machine learning techniques, particularly
artificial neural networks (ANNs), have emerged as
powerful alternatives to conventional statistical models for
predicting soil properties and nutrient availability. Owing
to their capacity for nonlinear mapping and self-adaptive
learning, ANNs have demonstrated notable success in a
range of soil science applications, including nutrient
evaluation (Li et al., 2014), estimation of available
nitrogen, phosphorous and K (Wu et al., 2014) without
accounting for the interrelationships among multiple K
pools. Moreover, many of these studies have not provided
explicit predictive equations or interpretable coefficient
outputs, thereby constraining their application in
operational nutrient management and decision-support
systems.

In response to these knowledge gaps, this study aimed
to develop and validate a suite of ANN models capable of
accurately estimating the distribution of multiple K
fractions, including water-soluble, available (water-
soluble + exchangeable), non-exchangeable, and total K
prior to K amendment, and water-soluble, exchangeable,
available, and fixed K following K amendment. Beyond
model development, the trained ANN models were
embedded into an open-source, Excel-based tool
constructed within the Visual Basic for Application
(VBA) framework, ensuring accessibility and practical
usability of agronomists, soil scientists, and land
managers. This integration bridges the gap between
advanced computational modeling and field-level
decision-making, thereby enabling data-driven, precision-
oriented K management. The outcomes of this research are
expected to contribute to a more comprehensive
understanding of soil K dynamics, enhance fertilizer-use
efficiency, and support the transition toward more
sustainable and resilient agricultural systems.

The present study was guided by the following
hypotheses: (1) ANNs can accurately predict multiple
forms of soil K, using soil physicochemical properties and
measured exchangeable K, (2) ANN-based approaches
outperform traditional MLR models in predicting soil K

fractions due to their superior ability to capture nonlinear
interactions among soil parameters, and (3) the predictive
performance of ANNs vary according to the chemical
complexity of individual K fractions, with more complex
fractions such as total K requiring deeper network
architectures.

2. Materials and Methods
2.1. Dataset compilation

The two datasets utilized in this study were extracted from
peer-reviewed articles published in international journals
prior to 2019 (Table 1). Dataset 1 included soil properties
(clay, sand, silt, OC, CEC, EC, and pH), water-soluble K,
exchangeable K, available K (water-soluble +
exchangeable), non-exchangeable K, and total K. Dataset
2 comprised the same soil properties, and initial water-
soluble K, except that EC was not reported. In addition,
dataset 2 contained dose-response data describing the
relationships between KCIl application rates (0—400
mg.kg!) and the resulting distribution of K among water-
soluble, exchangeable, and fixed K forms.

Briefly, the authors listed in Table 1 determined
particle size distribution using the hydrometer method and
measured soil pH potentiometrically in a 1:2.5 soil: water
suspension. The CEC measurement has been based on the
ammonium acetate method at pH 7. Water-soluble K
extracted with distilled water in a 1:5 (w/v) soil to water
ratio, while exchangeable K extracted using 1 M
ammonium acetate at pH 7. Non-exchangeable K
quantified as the difference between K extracted by
boiling nitric acid and the ammonium-acetate-extraction
fraction, and total K determined following a complete
digestion with a hydrofluoric acid mixture. Specifically,
Portela et al. (2019) used a difference method to quantify
fixed K, following the application of KCI at doses up to
400 mg.kg!. They derived fixed K using the following
equation:

Fixed K = (exchangeable K prior to K amendment +
K amendment) — exchangeable K following
K amendment [1]
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Fig. 1. A sample architecture of the artificial neural network model (ANN: 8-8-1) utilized to predict various fractions of soil K. As
presented in Table 3, the ANNs implemented in this study vary in their input layer, number of hidden layers, number of nodes per
hidden layer, and output layer.

Generally, the selection of articles, listed in Table 1 was
carried out through a rigorous screening process, ensuring
that only studies with comprehensive and consistent
reporting of K fractions and soil properties were included.
This approach enabled the compilation of a dataset that:
(1) encompassed a broad spectrum of environmental and
edaphic conditions, capturing substantial variations in
elevation (relative to sea level), agro-ecological
characteristics, climatic factors, soil horizons and depths,
slope gradients, and parent materials; and (ii) maintained
methodological consistency, thereby facilitating robust
comparative analyses.

2.2. ANN models

During the second phase of the investigation, the two
datasets were employed to construct multilayer perceptron
ANN models using MATLAB software. The ANN-based
modeling of individual K fractions was necessitated by
disparities in data availability and experimental design
between the two compiled datasets. Consequently, the
predictor variables for predicting K fractions prior to K
amendment comprised clay, sand, silt, OC, CEC, EC, pH,
and measured exchangeable K. For predicting K fractions
following K amendment, the predictor variables were
clay, sand, silt, OC, CEC, pH, initial water-soluble K, and
fertilizer-derived K. Separate ANNs were developed for
each target variable (K fraction). For the pre-amendment
condition, these target variables were water-soluble,
available (sum of water-soluble and exchangeable), non-
exchangeable, and total K. For the post-amendment
condition, the target variables were fixed, water-soluble,
exchangeable, and available K. Each K fraction was thus
configured with a specific set of inputs and a single output
corresponding to its target K fraction.

A representative ANN architecture was depicted in
Fig. 1, showing distinct input layers for the soil variables
and a single output layer for the predicted K fractions. A
comprehensive  summary of the  input-output
configurations for all developed models was provided in
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the flowchart in Fig. 2. The complete dataset was
partitioned into training (70%), testing (15%), and
validation (15%) subsets to evaluate the model robustness
using unseen data.

To compare the predictive performances of ANN and
MLR approaches, a separate MLR model was constructed
for each target variable. The same set of predictors used as
inputs for the ANNs (i.e., those represented in the input
layer of Fig. 2) were used as independent variables in the
MLRs, while the corresponding ANN output variables
were designated as the dependent variables. The predictive
efficacy of both ANN and MLR modeling approaches for
the various K fractions was assessed using the correlation
coefficient (r) between the predicted and observed K
fractions, along with the mean absolute error (MAE) and
root mean squared error (RMSE). Finally, the
aforementioned ANNs were embedded into Excel-based
tool using the Visual Basic for Applications (VBA)
programming framework. The tool and VBA codes were
presented as supplementary online material.

3. Results

The analysis of compiled data from published literature
(Table 1) revealed a substantial heterogeneity in soil
properties and K fractions, underscoring the diverse
characteristics of the studied soils (Table 2). This diversity
was immediately apparent in the soil texture, which spans
the entire textural triangle, encompassing everything from
coarse, sandy soils to heavy clays. Such a wide spectrum
of textural classes inherently influence key soil processes
like water retention. Furthermore, critical indicators of soil
health and fertility—OC and CEC—also exhibited marked
variability. This pronounced disparity suggests that the
soil represented a wide range of management histories,
climatic conditions and inherent fertility levels. Most
critically for this study, the various K fractions
demonstrated extensive variation. The wide ranges
observed in water-soluble K, exchangeable K and total K
(long-term reserve) highlight stark differences in both the
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Fig. 2. Flowchart illustrating the prediction of various fractions of soil K using an Excel-based tool. The term “Added K” denotes the
fertilizer-derived K input. Variation between the soil-property input layers (1 and 2) arises from constraints in the underlying
datasets.

immediate K availability for plants and the total K reserves
locked within soil matrix.

The ANN models demonstrated markedly superior
predictive performance compared with the MLR models
across all soil K fractions evaluated (Table 3). For water-
soluble K prior to fertilization, the ANN model achieved
a strong correlation between predicted and observed
values (r = 0.984), markedly outperforming the MLR (r =
0.780). This model also produced sustainably lower errors
(MAE = 8.73 vs. 47.61; RMSE = 23.83 vs. 84.43) and
exhibited robust training, testing, and validation
performance (0.992, 0.941, and 0.949, respectively).

Similarly, the ANN for non-exchangeable K prediction
achieved a high total-set correlation with markedly
reduced error relative to MLR and strong split-sample
performance [training (70%), test (15%), and validation
(15%)]. The models for other K fractions followed the
same pattern, with the ANN yielding substantially higher
accuracy and far lower prediction errors, highlighting the
ANN’s advantage in modeling the complex interactions
governing these fractions.

Following K amendment, ANN models again
outperformed MLR across fixed, exchangeable, and
water-soluble K fractions. Collectively, these results
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Table 2. Summary of descriptive statistics for soil properties and K fractions used in the present study.

Attributes Minimum Maximum Mean Range
Clay (%) 3 68.7 35.85 65.7
Sand (%) 4 97 50.5 93
Silt (%) 0 60 30 60
OC (%) 0 5.97 2.99 5.97
CEC (cmol().kg™") 0.6 62.56 31.58 61.96
EC (dS.m™) 0.06 20.70 10.38 20.64
pH 5.27 8.77 7.02 3.50
Water-soluble K (mg.kg™) 0 1332 666 1332
Exchangeable K (mg.kg™") 5.083 1368.8 686.942 1363.72
Auvailable K (water-soluble + exchangeable) K (mg.kg™) 7 2700.8 1353.9 2693.8
Non-exchangeable K (mg.kg™) 11.1 4200 2105.55 4188.9
Fixed K (mg.kg™) 5 346 175.5 341
Total K (mg.kg™!) 674 21806.1 11240 21132.1

confirm that ANNs consistently captured the multivariate
controls on soil K dynamics more effectively than MLR,
producing higher correlations and substantially lower
MAE and RMSE values across all K fractions.

The validation set performance consistently aligned
with training and test results across all K fractions,
demonstrating minimal overfitting. The close agreement
among all three mentioned sets confirms that the models
generalized effectively and are robust for predicting K
dynamics beyond the data used for training.

4. Discussions

The substantial variability = observed in the
physicochemical properties and K fractions across the
compiled dataset (Table 2) reveals the inherent
heterogeneity of the studied soils and underscores the
relevance of adopting ANN modeling approaches. The
wide spectrum of textural classes fundamentally
influences key soil processes such as water retention,
aeration, and nutrient-holding capacity (Sparks, 1987). In
particular, soils with higher clay content or greater
proportion of 2:1 clay minerals (e.g. smectite, vermiculite)
often exhibit greater capacity for K-fixation and buffering,
whereas kaolinitic soils typically hold less inter-layer K
and therefore lower total K reserves (Akbas et al., 2017).

Similarly, the marked variability in soil OC and CEC
across the dataset reflects a mixture of soils under differing
management histories, climatic regimes, and parental
material. High OC not only contributes to improved soil
structure and moisture status but also influences nutrient
metabolism and cation exchange processes, therefore
affecting K availability (Six et al., 2002). As such, the
wide disparity in OC and CEC signals soils with a broad
range of fertility potentials and dynamic behavior (Weil
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and Brady, 2017).

Most critically for this study, the various K fractions
exhibited extensive variation. The large ranges registered
water-soluble K (the immediate available pool),
exchangeable K (the short-term reserve) and total K (the
long-term reserve/structural pool) highlight stark
differences between soils in terms of both the immediate
K supply to plants and the magnitude of K reserves locked
in the mineral matrix (Sparks, 1987). These differences are
further modulated by soil mineralogy: for instance, soils
rich in feldspar or mica can possess significant non-
exchangeable K that becomes available only slowly
(Moterle et al., 2019).

In fact, the concept of a “K-paradox” has been
discussed in the literature; although soils may contain
large total K reserves, the plant—available portion may
remain low or inaccessible due to fixation or slow release
from non-exchangeable forms (Sparks, 1987; Weil and
Brady, 2017). This variability and heterogeneity are
particularly advantageous for the development and
implementation of ANN models. Because the ANN
training dataset spans a broad array of soil conditions,
physicochemical property values and K fraction
distributions, the resulting models are better equipped to
capture the complex nonlinear, and multidimensional
interactions inherent in soil-K systems. This enhances the
generalization capacity and reliability of the ANN models
when applied across diverse environmental and
agricultural contexts. This superior performance is
quantitatively confirmed, with the ANN models achieving
correlation coefficients between 0.91 and 0.99, and lower
prediction errors (MAE and RMSE) substantially
outperforming the MLR models. This result is consistent
with previous studies where ANNSs outperformed linear or
simpler statistical models in soil-related studies (Mosleh
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Table 3. Performance evaluation of the multilayer perceptron (MLP) artificial neural networks (ANNs) and multiple linear
regression models (MLRs) for predicting different soil K fractions, as qualified by the correlation coefficient (r), mean absolute error
(MAE), and root mean squared error (RMSE). Values in parentheses denote MLR performance for comparative assessment.
*Training __ correlation coefficient (r)  Axis titles of

@Network Identifier Ne.twork algorithm; Training Test Validation correlation #Correlatlon.plot with performance
architecture . metrics for total set
sample size subset subset  subset charts
600 .
Inputs: Soil traits, Predicted 300 .
exchangeable K. MLP Vvs. 0 .
Output: Water-soluble LM; 177  0.992 0.941 0.949 observed
. 8-8-1 0 300 600
K prior to K soluble K B )
amendment. (mg.kg™) r =0.984 (0.780);
MAE = 8.73 (47.61);
RMSE =23.83 (84.43)
4000
Predicted .
Inputs: Soil traits, Vs. 2000
exchangeable K. MLP observed b o
Output: Non- g.8.8.] LM;177 0973 0891  0.909 non- 0
exchangeable K prior exchangeab 0 2000 4000
to K amendment. le K r=0.946 (0.725);
(mg.kg™) MAE = 129.34 (311.39);
RMSE = 197.24 (421.60)
20000
L]
Inputs: Soil traits, Predicted 100001+ g e
exchangeable K. MLP VS . *
) & ; 8-10-10- LM; 177 0937 0.871 0.891 observed 0
Output: Total K prior 10-1 total K 0 10000 20000
to K amendment. (mg kg™ r=0.916 (0.431);
MAE = 1300.50 (3519.03);
RMSE =2037.11 (4341.22)
300
Inputs: Soil traits, .
initial water-soluble PreSlscted 150 *
K, added K. MLP i Mis4 0991 0968 0994  observed 0 .
Output: Fixed K 8-8-1 0 150 300
followine K fixed K
0 O‘ng (mgkg™) r=0.987 (0.933);
amendment. MAE = 11.04 (20.87);
RMSE = 14.63 (31.44)
300 9
Inputs: Soil traits, Predicted 2
initial water-soluble Vs. 150
K, added K. MLP . observed 0
Output: Exchangeable 8-8-1 LM; 54 0.995  0.973 0.974 exchangeab 0 150 300
K following K le K_1 r=0.991 (0.874);
amendment. (mg.kg™) MAE = 8.13 (28.76);
RMSE = 10.80 (39.22)
100
Inputs: Soil traits .
> 50
initial water-soluble Preglscted
K, added K. MLP I M54 0975 0981 0961 observed 0
Output: Water-soluble 8-8-1 0 50 100
K followine K soluble K
0 0(;”‘“% (mgkg™) r=0.990 (0.85);
amendment. MAE = 1.97 (11.4);

RMSE =4.39 (16.68)

@: The input variables for the model differed as dictated by available data. For predicting K fractions following fertilizer K application, the input
layer consisted of soil properties such as clay, silt, sand, pH, OC, and CEC. In contrast, models for all other K fractions prior to fertilization
additionally included EC.

*: The Levenberg-Marquardt (LM) algorithm was employed as the optimization method in the training phase. The tangent sigmoid (TANSIG) and
pure linear (PURELIN) transfer functions were used for the hidden and output layers, respectively.

#: In the charts, the solid line represents the 1:1 reference line.
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etal., 2016; Mozaffari et al., 2024; Pacci et al., 2024; Tang
et al., 2009).

The superior performance of ANNs over MLRs in this
setting can be attributed to two key factors. First, the
dynamic of K fractions are driven by a network of highly
interrelated variables, i.e. the studied soil physicochemical
properties, which result in nonlinear system behaviors,
such as the accelerated release of K from non-
exchangeable pools when exchangeable K falls below a
specific level (Portela et al., 2019). Second, the ANN
architectures were customized to capture this complexity.
Easier-to-predict fractions were modeled with simpler
structures (8-8-1), whereas the more complex non-
exchangeable K required a moderately deep network (8-8-
8-1), and total K, encompassing all pools, necessitated the
most intricate design (8-10-10-10-1). This tiered
complexity in network architecture reflects the gradation
in soil processes, a principle observed in other nutrient
modeling research (Li et al., 2014; Pacci et al., 2024).

From a mechanistic perspective, the high correlation
between predicted and observed K fractions suggest that
the models have implicitly captured key soil K dynamics.
These dynamics include the exchange between solution
and exchangeable pools, as well as the slow release of K
from non-exchangeable interlayer sites in clay minerals
and the weathering of K-bearing minerals such as mica
and feldspar, processes often driven by soil acidification
(Moterle et al., 2019). Furthermore, the models reflect the
influence of soil texture and mineralogy, where a higher
clay content enhances K buffering capacity. This reduces
the rapid loss of exchangeable K but can also limit its
immediate availability (Sparks, 1987). Finally, soil OC
and CEC are represented as key modulating factors,
influencing cation exchange equilibrium, K adsorption-
desorption dynamics, and root access to K (Palanivell et
al., 2020).

In terms of practical implications, the techniques
developed here (ANN-embedded Excel + VBA tool) offer
a readily accessible and user-friendly means for field
practitioners, agronomists and soil-fertility managers to
estimate multiple K fractions using routine soil analytics
(clay, silt, sand, pH, CEC, EC, exchangeable K, fertilizer-
derived K). This is valuable because conventional
laboratory ~ fractionation of K  (water-soluble,
exchangeable, non-exchangeable, and structural) is time-
consuming, costly and not widely available in many
regions. The user tool therefore provides a cost-effective
alternative for site-specific K-management decisions.
Moreover, by enabling prediction of both immediate K
supply (water-soluble, exchangeable) and longer-term
reserve K (non-exchangeable, structural), the tool supports
a more holistic K-fertility strategy, enabling optimization
of fertilizer scheduling, avoiding over-application (and
potential environmental loss) and enhancing soil fertility
(Xu et al., 2020).

Nevertheless, despite the strength of the present
modeling approach, the future research directions should
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be noted. First, while the input dataset covers a wide range
of soils, it may still omit certain soil types (e.g., highly
calcareous soils, organic soils, extreme weathered
Ferralsols) or cropping systems (e.g., biochar
amendments, regenerative agriculture) that alter K
dynamics in non-standard ways. Second, although the
model inputs include routine soil properties, key factors
such as clay mineralogy, specific surface area and
weathering indices (alkali-Kaolinization index and
chemical index of alteration) are not directly represented,
even though these factors strongly influence non-
exchangeable K (Zareian et al., 2018). Future models
might integrate mineralogical or spectroscopic proxies
(e.g., XRD-derived clay-mineral proportions of VIS-NIR
spectra) to enhance predictive accuracy and mechanistic
interpretability.

5. Conclusion

The results presented here demonstrate that ANNs provide
a powerful and adaptable framework for predicting soil K
fractions from readily measurable soil properties. By
leveraging the intrinsic complexity and heterogeneity of
soils, the developed models overcome many of the
limitations of MLR, enable more accurate nutrient-
management decision-making and have strong potential
for extension to other nutrients (e.g., N, P, Mg) and
broader soil quality indices. As agriculture moves into the
era of digital-soil-fertility management and precision
nutrient application, such tools will be increasingly central
to balancing productivity, environmental stewardship and
resource sustainability.

Supplementary Online Material

The Excel-based tool is available at:
https://drive.shahroodut.ac.ir/index.php/s/fayE0zUH16T
Qe2M

The Visual Basic for Applications (VBA) codes (48 pages)
for the Excel-based tool is available for download at:
https://drive.shahroodut.ac.ir/index.php/s/PDvgtXC47zas
mdH
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