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ABSTRACT

Sustainable agriculture demands innovative strategies to optimize water use amid growing climatic uncertainties, resource
limitations, and to bolster the resilience of farming systems worldwide in the face of climate change. This review provides a critical
synthesis of state-of-the-art modeling approaches that integrate crop growth dynamics with soil hydraulic processes to support
precision irrigation management. Emphasizing the vadose zone's central role as the critical interface governing soil-plant-water
interactions, the paper examines a suite of widely used, process-based crop models (e.g., WOFOST, CERES, AquaCrop, DSSAT,
APSIM) alongside specialized hydrological models (e.g., HYDRUS, SWAP, SWAT). It highlights their synergistic capability to
simulate the complex, nonlinear feedback between root water uptake, soil moisture dynamics, evapotranspiration, and solute
transport, which is fundamental for predicting crop water requirements and responses to irrigation. The primary challenge for this
approach is the accurate determination of often unknown or highly variable soil hydraulic and crop parameters. This review
demonstrated that 1) Advanced inverse modeling techniques provide a powerful alternative to direct measurements by using
optimization algorithms to estimate critical parameters from field data. 2) Sensitivity analysis (both local and global) is indispensable
for evaluating model robustness, identifying influential parameters, and mitigating calibration issues like equifinality. 3) Well-
calibrated, integrated models enable a robust, physically sound framework for generating site-specific irrigation schedules, moving
beyond traditional homogeneous management. We also identify key challenges, including data scarcity and computational demands.
To address these, we advocate for the future development of quasi-3D hybrid modeling platforms that leverage high-resolution data
from easily available resources, laboratories, remote sensing, and IoT networks. This integrative approach holds significant promise
for advancing next-generation precision irrigation, enhancing water use efficiency, and strengthening global agricultural resilience.

Keywords: Precision irrigation, Inverse modeling, Sensitivity Analysis, Soil hydraulic properties, Vadose Zone.

conductivity, van Genuchten parameters) and crop-related
properties (e.g., root growth, crop coefficients). These
parameters are often highly variable in space and time and
are difficult to measure directly at relevant scales. These
difficulties lead to the adopt the inverse
modeling techniques, where model parameters are estimated
by minimizing the discrepancy between simulated outputs
and observed field data (e.g., soil moisture time series and
yield) using optimization algorithms. Successing of this
calibration process is typically evaluated by statistical
metrics like the Root Mean Square Error (RMSE) or the
Nash-Sutcliffe efficiency coefficient.

1. Introduction

The fast growing global population coupled with the
escalating impacts of climate change and increasing
freshwater scarcity, has intensified the demand for
sustainable and efficient agricultural water management
(FAO, 2023). Precision irrigation has therefore emerged
as a critical strategy to optimize water use efficiency,
enhance crop productivity, and minimize the
environmental impacts (Lakhiar et al., 2024). Achieving
effective precision irrigation requires a comprehensive
understanding of the complex interactions within the

soil-plant—atmosphere continuum (SPAC) framework, as
well as to consider about the spatial and temporal
variability in soil moisture, crop water demand, and
environmental conditions. The vadose zone, which
extends from the soil surface to the groundwater table, is
the critical interface where these interactions occur. Its
dynamics are governed by complex, nonlinear physical
processes, primarily described by Richards' equation for
variably saturated water flow and the convection-
dispersion equation for solute transport. Accurately
simulating these processes is fundamental to predicting
crop water requirements.

The application of process-based models often faces a
significant challenge like the accurate determination of key
soil hydraulic properties (e.g., saturated hydraulic
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Furthermore, the robustness of these models must be
evaluated under uncertainty. Sensitivity Analysis (SA)
serves this purpose by quantifying how uncertainty in the
model inputs (parameters, initial conditions) contributes
to uncertainty in model outputs. SA methods range from
local approaches, evaluating perturbations around a
nominal parameter set, to global methods, which explore
the entire parameter space. This process is indispensable
for identifying the most influential parameters, guiding
data collection efforts, and diagnosing model structure.

Traditional irrigation scheduling methods, which
often rely on empirical guidelines or fixed calendars, are
limited in their capacity to address the heterogeneity
inherent in agricultural fields (Ahmed et al., 2023). These
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conventional approaches may lead to either under- or
over-irrigation, resulting in yield loss or excessive water
consumption (Umutoni and Samadi, 2024). In contrast,
physically based and process-oriented models offer
robust frameworks to simulate dynamic soil water
movement, crop growth, and evapotranspiration
processes (Rezaei, 2016). Crop growth models such as
WOFOST (WOrld FOod STudies), CERES (Crop
Environment Resource Synthesis), and AquaCrop (Crop-
Water Productivity Model of FAQO) have been
extensively utilized to assess crop responses to variable
irrigation regimes and climate variability (Moroozeh et
al., 2023; Rezaei, 2016). Simultaneously, hydrological
models including HYDRUS (Windows application for
simulating water, heat, and solute movement), SWAP
(Soil Water Atmosphere Plant), and SWAT (Soil &
Water Assessment Tool) provide detailed insights into
soil water and solute transport mechanisms within the
vadose zone, enabling better prediction of water
availability for plants (Rezaei, 2016; Rezaei et al., 2021;
Simfinek et al., 2024b). Furthermore, the escalating
impacts of climate change introduce additional variability
and uncertainty, necessitating robust modeling
frameworks that can adapt to changing conditions.

A pivotal aspect of the successful application of these
models lies in the accurate determination of soil
hydraulic and crop-related parameters (Rezaei et al.,
2016a; Simtnek et al, 2024b). Inverse modeling
techniques have gained prominence as powerful tools for
parameter estimation, enhancing model calibration by
reconciling observed field data with simulated outputs
(Rossi et al., 2015; Wohling et al., 2009; Zhang et al.,
2018). Furthermore, sensitivity analysis methods
contribute to identifying key parameters influencing
model predictions and to evaluating model robustness
under uncertainties (Rezaei et al., 2016a).

Despite significant progress, challenges remain in
scaling these models from plot to regional Ievels,
incorporating high-resolution spatial variability, and
dealing with data limitations. Addressing these
challenges necessitates the development of integrated
modeling platforms that couple crop growth and soil
hydrology models with advanced data assimilation
techniques and remote sensing inputs. This review aims
to synthesize current advances in crop growth and
hydrological modeling as applied to precision irrigation.
It highlights the principles, applications, and limitations
of key modeling frameworks, including inverse modeling
and sensitivity analysis, and discusses their role in
improving irrigation management decisions. By bridging
modeling techniques with emerging technologies, this
study contributes to the foundation for developing next-
generation decision support systems that promote
sustainable water use and enhance crop productivity
under changing environmental conditions. This review
also acknowledges the research limitations inherent in
these integrated approaches, particularly concerning data

scarcity, scaling challenges, and computational demands,
and discusses pathways to overcome them.

2. Modeling Approach

Achieving an optimal balance between water supply and
crop water demand is a central challenge in sustainable
agricultural water resource management. The vadose
zone, encompassing both the soil matrix and root zone,
represents a complex environment governed by highly
nonlinear and dynamic interactions (Siminek et al.,
2024a). Traditional irrigation scheduling methods often
fall short due to limitations such as the high cost of
sensor deployment, difficulty in acquiring accurate in situ
or laboratory measurements, and limited adaptability to
variable field conditions (Rezaei et al., 2021). As a result,
modeling approaches have gained traction as effective
alternatives for simulating irrigation timing and
quantities.

In recent decades, there has been a marked transition
from allocation-based methods to data-driven and
quantitative irrigation management strategies
(Elmaloglou and Malamos, 2003; Jenkins and Block,
2024; Li et al.,, 2012; Paudyal and Dasgupta, 1990;
Raman et al., 1992; Sanaee-Jahromi et al., 2001; Violino
et al,, 2023). At the core of this evolution lies the
development and application of mathematical, numerical,
conceptual, and physically-based models. These models
can function independently or be integrated with crop
growth and hydrological models to facilitate more
precise and responsive irrigation planning (Rezaei,
2016). Their widespread adoption in irrigation system
design and management underscores their practical
values.

Modeling approaches offer several advantages. They
provide a systematic and replicable framework for
quantifying complex processes within the vadose zone,
including soil moisture dynamics, evapotranspiration,
solute transport, and plant-water interactions (Jones et al.,
2017). Furthermore, these models can be calibrated to
estimate crop water requirements under varying climatic
conditions, soil properties, salinity and sodicity levels,
and crop types (Rezaei et al., 2016a; Rezaei et al., 2021;
Siméinek et al., 2024a). Such integrative modeling
frameworks support the implementation of precision
irrigation and contribute to optimizing water use
efficiency in agriculture as illustrated in the conceptual
framework in Figure 1.
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2.1. Crop growth modeling

Crop growth models are essential tools for understanding
plant development and evaluating the effects of water
and nutrient management on crop performance
(Kundathil et al., 2023). Over the past three decades,
numerousm models have been developed to simulate
crop growth and soil-water interactions with varying
degrees of complexity, including statistical, mechanistic,
deterministic, stochastic, static, dynamic, descriptive, and
explanatory frameworks (Rauff and Bello, 2015; Sargun
and Mohan, 2020; Vazifedoust et al., 2008) These
models form the basis of decision support systems for
irrigation and fertilization scheduling, climate impact
assessments, and sustainable agricultural planning.

Typically grounded in soil water balance principles
and yield—water relationships, crop models are employed
to simulate plant responses to varying environmental and
management conditions. Applications include assessing
irrigation strategies (Darouich et al., 2014), evaluating
climate change scenarios (Gobin, 2010; Semenov, 2009),
designing and managing irrigation systems (Darouich et
al., 2014; Li et al, 2011; Shang and Mao, 2000),
investigating water-saving practices (Fang et al., 2010;
Gongalves et al., 2007), and testing the feasibility of
deficit irrigation (Geerts et al., 2010; Salemi et al., 2011).
These models consider key variables such as weather
patterns, soil characteristics, crop traits, and management
practices to simulate plant growth dynamics across time.
By enabling scenario analysis, crop models provide
valuable insights for optimizing water and nutrient use,
improving crop yield, and supporting resilient farming
systems.

Despite their benefits, crop models are subject to
limitations. These models are typically grounded in key
assumptions such as homogeneity within field units,
simplified representations of root architecture and water
uptake, and often neglect complex interactions with
pests, diseases, and micronutrient limitations. Their
accuracy depends heavily on reliable input data (e.g.,
weather, soil, and crop parameters), proper calibration
and validation, and, in some cases, advanced
computational resources and modeling expertise (see
Table 1 references). Table 1 summarizes several widely
used crop growth models and their respective
applications.

2.2. Hydrological modeling

Despite the significant contributions of crop growth
models to agricultural productivity assessment, their
hydrological components often rely on oversimplified
assumptions such as fixed rooting depths and static field
capacity concepts. These limitations underscore the need
for dedicated hydrological modeling approaches capable
of accurately simulating water dynamics and solute
transport within the vadose zone—a region characterized
by highly nonlinear, heterogeneous, and dynamic

processes. Since the early 1970s, soil-water modeling
has evolved from empirical approximations to
sophisticated, physically-based formulations that enable
the exploration of interactions within the soil-plant—
atmosphere continuum(Bultot and Dupriez, 1976;
Neuman et al., 1974; Toksoz and Kirkham, 1971;
Zaradny and Feddes, 1979). Early models such as the
Stanford Watershed Model (Crawford and Burges, 1966).
laid the conceptual foundation for simulating watershed
hydrology and remain historically significant in shaping
the trajectory of modern modeling frameworks.

Hydrological models are often classified according to
their underlying assumptions, complexity, spatial and
temporal resolution, and computational methodologies.
First, based on mathematical structure, models are
divided into deterministic and stochastic classes
(Ghonchepour et al., 2021). Deterministic models yield a
unique solution for a given set of inputs, suitable for
mechanistic analyses with well-defined boundary
conditions. Stochastic models incorporate random
variables or probabilistic parameters to account for
natural variability and data uncertainty, making them
more adaptable to real-world complexities (Jajarmizadeh
et al., 2012). Second, temporally, models can be static,
providing  steady-state = approximations  without
considering temporal evolution, or dynamic, which
simulate time-dependent processes. Dynamic models are
further differentiated as event-based—suited for
simulating storm events or irrigation cycles—and
continuous, which represent long-term processes like
seasonal recharge and evapotranspiration.

Third, according to their physical basis, models are
categorized as empirical, conceptual, or physically-based.
Empirical (or data-driven) models rely solely on
statistical correlations derived from historical input—
output datasets and are useful where physical insight is
limited (Hu et al., 2021). Conceptual models introduce
simplified process representations, often through
interconnected reservoirs simulating rainfall infiltration,
percolation, surface runoff, and drainage. These models
strike a balance between realism and manageability but
demand rigorous calibration. Physically-based models,
also referred to as mechanistic models, employ first-
principle equations such as Richards’ equation for water
flow and Fickian-based formulations for solute transport
(Feng et al., 2025). These models simulate the spatial and
temporal evolution of state variables—such as water
content, matric potential, and solute concentration—
using partial differential equations that require
discretization and numerical solution. Their strength lies
in their predictive capacity and process fidelity, though
they necessitate substantial data input, including soil
hydraulic ~ properties, boundary fluxes, and
meteorological forcing (Feng et al., 2025).

Fourth, with regard to spatial representation,
hydrological models are typically lumped or distributed.
Lumped models simplify spatial variability by
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aggregating inputs and outputs over entire fields or
catchments, facilitating rapid analysis with minimal data
requirements but assiuming hetrogenity (Hu et al., 2021).
In contrast, distributed models incorporate spatial
heterogeneity in land use, topography, soil types, and
hydraulic properties, enabling fine-scale resolution of
spatial patterns in water and solute fluxes (Fenicia et al.,
2016). While computationally demanding, distributed
models are indispensable for site-specific irrigation
management  and  landscape-scale  hydrological
assessments.

Fifth, based on computational procedures, models are
either analytical or numerical. Analytical models offer
closed-form solutions to governing equations and are
valued for their elegance and mathematical clarity,
though their applicability is restricted to idealized
conditions with uniform properties and simple
boundaries. = Numerical = models—utilizing  finite
difference, finite element, or finite volume methods—are
capable of solving complex systems with nonlinearities,
variable boundary conditions, and multi-domain coupling
(Fenicia et al., 2016). These models generate outputs in
the form of spatial-temporal distributions of state
variables, which can be visualized and interpreted to
inform irrigation planning, salinity management, or
drainage system design (Rezaei, 2016).

Ultimately, the selection of a hydrological model
must be guided by the specific objectives of the study,
the scale of application, available data, and
computational resources. Physically-based numerical
models, although data- and resource-intensive, provide
the highest level of process representation and are
increasingly being integrated with crop models to
improve the sustainability and precision of agricultural
water management. Table 2 presents an overview of
widely adopted hydrological models and their key
characteristics.

3. Soil Hydrological Model

Over recent decades, substantial progress has been made
in conceptualizing and mathematically modeling water
flow and solute transport in the vadose zone. Numerous
analytical and numerical models have emerged to
simulate water and solute movement across soil
profiles—from the surface to the groundwater table.
Among them, the Richards equation (Richards, 1931) for
variably saturated flow and the convection—dispersion
equation for solute transport based on Fick’s law remain
fundamental tools in vadose zone hydrology.
Deterministic solutions of these equations are widely
applied to predict water and solute behavior under
various environmental conditions and to interpret
laboratory and field experiments (Simtinek et al., 2024a).
These models serve as powerful tools for extrapolating
findings across diverse soil types, cropping systems,
climatic conditions, and management practices (Simiinek

et al., 2013). Modeling approaches range from analytical
solutions for idealized systems to fully coupled
numerical schemes that incorporate complex nonlinear
and transient processes, such as non-equilibrium flow or
reactive solute transport (van Genuchten et al., 2014).

Despite the availability of advanced numerical
models, their practical implementation often requires
extensive effort in data preparation, mesh design, and
output visualization. To overcome these limitations and
promote broader use, Simtinek et al. (2006b) developed
HYDRUS-1D, a user-friendly, Windows-based interface
for simulating variably saturated water flow and
heat/solute transport. This platform solves the Richards
equation and the advection—dispersion equations using
Galerkin-type finite element methods (Celia and Binning,
1992), while also incorporating root water uptake, dual-
porosity, and dual-permeability flow domains. It supports
vertical, horizontal, and inclined flow orientations, and
can handle a wide range of boundary conditions,
including atmospheric, prescribed head or flux, free
drainage, and constant head conditions.

HYDRUS-1D also includes an inverse modeling
module based on the Levenberg—Marquardt optimization
algorithm (Levenberg, 1944; Marquardt, 1963) for
estimating soil hydraulic and solute transport parameters
using transient or steady-state observations (Simtnek et
al., 2013). The HYDRUS family has since expanded to
include HYDRUS-2D/3D (Simfinek et al, 2006a;
Simiinek et al., 2006b), capable of simulating water, heat,
and solute transport in two- and three-dimensional
variably saturated media. The latest release, HYDRUS
2024, offers enhanced functionality for simulating
complex soil-plant—atmosphere interactions (Simiinek et
al., 2024a). Collectively, these models constitute a
robust, flexible platform for investigating the dynamics
of water and solutes in heterogeneous, structured, and
reactive soils under diverse environmental and
agronomic scenarios.

4. Inverse Modeling and Parameter Estimation

Accurate estimation of soil hydraulic properties is
essential for enhancing water use efficiency in
hydrological modeling (Rezaei et al., 2016a; Simiinek
and Hopmans, 2002). However, direct measurement of
these parameters in the laboratory or field is often labor-
intensive, costly, or insufficiently accurate—particularly
when scaling up to field applications (Verbist et al.,
2012; Wohling et al., 2008). Therefore, model calibration
becomes a critical step, involving the adjustment of
model inputs—such as hydraulic parameters, initial
states, and boundary conditions—to  minimize
discrepancies between simulated and observed soil
moisture dynamics (Simtnek et al., 2012). Figure 2
represents a schematic of inverse modeling and
parameter estimations.
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Fig 2. A schematic of inverse modeling and parameter estimations, illustrating observed data can be used for sensitive model
parameter estimations.

Traditionally, calibration has been conducted through
manual trial-and-error methods. While conceptually
straightforward, this approach becomes cumbersome,
subjective, and inefficient when dealing with complex
systems and a high number of interacting parameters. To
address these limitations, researchers have developed
automated calibration techniques, particularly inverse
modeling, which offers an objective and systematic
alternative (Mertens et al., 2005). One widely used
optimization algorithm in inverse modeling is the
Levenberg—Marquardt method, which facilitates single-
objective parameter estimation by iteratively minimizing
the difference between observed and simulated data
(Abbasi et al., 2004; Abbasi et al., 2003; Jacques et al.,
2012; Liu et al., 2023; Siminek et al., 2013).

Inverse modeling has proven especially valuable for
estimating unsaturated soil hydraulic parameters from
transient data sets in both laboratory and field conditions.
As defined by Hopmans et al. (2002), it is a process that
infers unknown causes (i.e., hydraulic parameters) from
observed effects (e.g., water content or pressure head), in
contrast to direct modeling. This methodology typically
relies on solving the Richards equation, enabling the
simultaneous estimation of the soil water retention curve
and the unsaturated hydraulic conductivity function. The
key advantages of inverse modeling include: i) Greater
flexibility in defining boundary conditions for transient
experiments; ii) Simultaneous determination of multiple
hydraulic functions; iii) Enhanced accuracy and speed of
parameter optimization; and iv) Applicability in field
settings under variable and non-ideal boundary
conditions (Simtinek et al. (2024a); Hopmans et al.,
2002; Vrugt et al., 2008; Wohling and Vrugt, 2011).

The inverse modeling approach is based on
minimizing the objective function which expresses the
discrepancies between the simulated and observed
values. Despite these advantages, inverse modeling is not
without challenges. In the optimization process, an
objective function is measuring an agreement between

measured and simulated data by statistic criteria such as
the root-mean-square errors (RMSE), the coefficient of
determination (1?), and the Nash—Sutcliffe coefficient of
model efficiency (Ce.). It is directly or indirectly related to
the adjustable parameters to be fitted. Minimizing the
objective function generates the best-fit parameters.
Maximum probability density function (pdf) and a
minimum least-squares criterion should be achieved
(Simtinek and Hopmans, 2002). The objective functions
can be around any observed variable which is used as
inverse input data such as soil water content, infiltration
and water retention data for all soil layers with unit or
different weighting. When multiple local minima or a
global minimum occur in a range of parameter values on
the basis of the convexity of the objective function
(which can be increased by inclusion of prior information
(initial input values of parameters)), the model solution is
called non-unique. Non-uniqueness, non-identifiability,
and instability often compromise parameter estimation.
Non-uniqueness arises when multiple parameter sets
yield similar model outputs, often due to flat or convex
objective function surfaces. Providing prior information,
such as plausible parameter bounds, can help mitigate
this issue. Non-identifiability occurs when distinct
parameter combinations produce indistinguishable
system responses, complicating the derivation of a
unique solution. Instability, on the other hand, reflects
sensitivity to small errors in input data or model
structure, leading to disproportionately large variations in
estimated parameters. Together, these issues contribute to
the ill-posedness of inverse problems (Chou and Voit,
2009; Rezaei et al., 2016a).

To address these challenges, sensitivity analysis is
commonly employed (Chou and Voit, 2009; Rezaei,
2016; Rezaei et al., 2016a). This involves systematically
evaluating how model outputs respond to changes in
individual parameters, thereby identifying the most
influential ones. By focusing on a reduced set of sensitive
parameters, the risk of over-parameterization and
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Fig 3. A schematic of different set of initial values e.g., hydraulic properties on model predictions, illustrating sensitivity analysis.

identifiability issues can be reduced (Hopmans et al.,
2002). The effectiveness of sensitivity analysis is
influenced by several factors, including the number and
type of parameters being optimized, the quality of
observational data, and the structure of the model. Rocha
et al. (2006) and van Genuchten et al. (2012) highlight
the use of one-at-a-time sensitivity approaches for
refining inverse modeling procedures and reducing
uncertainty in simulations.

In sum, inverse modeling represents a robust, data-
driven approach for parameter estimation in vadose zone
hydrology, especially when paired with optimization and
sensitivity analysis techniques. Its integration into
hydrological  modeling  frameworks  significantly
enhances model reliability and predictive capacity under
field conditions.

4.1. Initial values of soil hydraulic parameters

Accurate simulation of soil water dynamics and solute
transport requires a thorough understanding of the
interactions among soil, water, atmosphere, and plant
systems. Within this context, reliable initial estimates of
soil hydraulic parameters, particularly soil water content,
are critical. The accuracy of the inverse modeling process
strongly depends on these initial values, as they influence
the convergence, stability, and reliability of the
optimized parameters (Figures 2 and 3). Therefore,
providing well-constrained and physically meaningful
initial estimates is essential for both forward and inverse
modeling of water, solute, and energy fluxes in the
vadose zone (Rezaei et al., 2016b).

Soil heterogeneity is a fundamental characteristic of
natural systems, governed by factors such as macropore
structure, aggregation, texture, and soil layering. These
physical heterogeneities introduce spatial variability in
water retention and hydraulic conductivity, which
directly impact the soil's ability to store and transmit
water at the field scale (Teixeira et al., 2014).
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Quantifying this variability remains a key research
challenge, as accurate representation of spatial patterns is
necessary to improve predictive performance of
hydrological models.

Numerous techniques for characterizing soil
hydraulic properties have been developed and refined
over the past decades. Classical methods, such as those
compiled by Klute (1986) and Dane and Topp (2002),
involve direct laboratory or field measurements. These
approaches, while accurate, are often expensive, time-
consuming, and labor-intensive. More recently, state-of-
the-art reviews such as Minasny et al. (2013) have
introduced novel techniques and highlighted the
importance of balancing accuracy with practical
feasibility. An overview of these methods is presented in
Tables 3 and 4.

Given the limitations of direct measurement, indirect
estimation methods have gained prominence. In
numerical modeling, soil water retention characteristics
are typically described using closed-form analytical
expressions, such as those by van Genuchten or Brooks-
Corey, which require shape parameters as input. These
parameters are either measured experimentally or
inferred through fitting procedures using soil water
retention curve (SWRC) data. To improve efficiency,
pedotransfer functions (PTFs) are often employed to
estimate hydraulic parameters based on more readily
available soil properties (Cornelis et al., 2005). While PTFs
offer a practical alternative, their accuracy depends on the
quality and representativeness of the training dataset.

Several studies have systematically compared
different analytical models for representing the SWRC,
including unimodal and bimodal formulations, and
evaluated their performance in diverse soil types and
conditions (Cornelis et al., 2005; Khlosi et al., 2008).
These approaches contribute to a growing toolbox of
methodologies aimed at capturing the physical behavior
of soil water movement, while minimizing the reliance
on extensive laboratory measurements.
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5. Sensitivity Analysis

Sensitivity analysis (SA) is a fundamental step in model
evaluation, aiming to quantify how variations in input
parameters or initial conditions influence model outputs
(Fig. 3). This is particularly critical when input
parameters are uncertain, poorly defined, or difficult to
measure directly. By identifying the most influential
variables, SA improves confidence in model predictions
and assists in prioritizing data collection and
experimental design. It is also closely linked to
uncertainty analysis, which quantifies the total
uncertainty in model responses arising from uncertain
inputs (Rocha et al., 2006). Early studies, such as that of
Dane and Hruska (1983), highlighted challenges in the
uniqueness of inverse modeling solutions, showing that
parameter sensitivity is strongly influenced by boundary
conditions. Hopmans et al. (2002) further emphasized
that higher parameter sensitivity enhances the
convergence rate in inverse modeling procedures.
However, the degree of sensitivity is not constant; it
depends on multiple factors, including the nature and
number of optimized parameters, the model structure, the
numerical scheme, and the quality of the input data
(Russo et al., 1991).

From a methodological perspective, sensitivity
analysis can be viewed as a form of feature importance
evaluation and parameter selection within the model
calibration workflow. In this context, model parameters
are analogous to "features" in machine learning, and SA
provides a robust framework for ranking them by their
influence on predictive outcomes. By identifying and
retaining only the most sensitive parameters for
calibration, SA effectively performs dimensionality
reduction, mitigating the curse of dimensionality,
reducing the risk of over-parameterization, and
enhancing the stability and efficiency of the inverse
modeling process. This function is directly comparable to
the objectives of feature selection algorithms in statistics
and machine learning (e.g., regularization techniques like
LASSO), albeit applied here to process-based physical
models.

To mitigate the issue of non-uniqueness and to
stabilize the inverse modeling process, it is recommended
to minimize the number of parameters subject to
optimization and to constrain insensitive parameters to
their observed or measured values (Schwartz and Evett,
2003). This strategy enhances the identifiability of
critical parameters and reduces computational
complexity. Time-dependent or dynamic sensitivity
analysis is particularly valuable in hydrological modeling
under changing environmental conditions, such as during
periods of irrigation or drought. It allows for identifying
the most relevant parameters across specific time
windows, which can significantly enhance model
efficiency and accuracy. Several studies have introduced
summary sensitivity indices to condense temporal

sensitivity information into interpretable metrics (Rezaei
et al.,, 2016a; Abbasi et al.,, 2003a; Li et al., 2012;
Mertens et al., 2005; Rocha et al., 2006; Simtnek and
van Genuchten, 1996; Verbist et al., 2012; Zhou et al.,
2012).

Broadly, sensitivity analysis methods can be
classified into two main categories (Rezaei et al., 2016a):
i) Local Sensitivity Analysis (LSA) which evaluates the
effect of small perturbations in input parameters around a
nominal value, typically using derivative-based
approaches. It is computationally efficient but may not
capture nonlinear or interaction effects in complex
systems. ii) Global Sensitivity Analysis (GSA) which
examines the full parameter space by varying inputs
across their entire distribution, often using Monte Carlo
or variance-based methods. GSA provides a more
comprehensive picture of parameter influence, though it
is more computationally intensive.

Overall, sensitivity analysis serves as a diagnostic and
optimization tool that enhances model transparency,
improves parameter selection strategies, and ultimately
strengthens the model's predictive capability. Its
integration into modeling workflows is essential for
ensuring robust, reliable simulations in soil-water-plant-
atmosphere systems. While this review focuses on SA as
the primary method for feature (parameter) selection in
process-based models, it is acknowledged that other
statistical and machine-learning-driven feature selection
approaches exist and could be integrated in future hybrid
modeling frameworks.

5.1. Global sensitivity analysis

Global sensitivity analysis is a robust and widely adopted
framework that quantifies the contribution of input
parameter uncertainty to the variance observed in model
outputs. Unlike local methods that assess perturbations
near a fixed point, GSA considers the entire range of
parameter values by incorporating  probability
distributions, thus offering a more comprehensive
understanding of model behavior (Saltelli et al., 2008).
Several techniques have been developed for GSA,
including sampling-based approaches such as Monte
Carlo simulations (Spear and Hornberger, 1980),
screening methods like the Morris one-at-a-time (OAT)
procedure (Morris, 1991), and variance decomposition
methods such as the Sobol indices (Sobol, 1993).
Additionally, response surface methodologies allow
for the replacement of complex process-based models
with computationally efficient meta-models (Kleijnen et
al., 1992), while regression-based approaches have been
employed as simplified alternatives in high-dimensional
systems (Iman and Helton, 1988). These techniques
enable the identification of both individual parameter
effects and their interactions, thereby facilitating model
simplification and prioritization of calibration efforts.
Overall, GSA enhances model interpretability and
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predictive reliability by elucidating which parameters
most significantly influence the system response. For a
comprehensive overview of GSA methods and their
applications in environmental modeling, readers are
referred to Loosvelt (2013). Each mentioned methods has
its specific formula to be calculated therefore they are not
represented here.

5.2. Local sensitivity

Local sensitivity analysis is a simpler yet foundational
approach in the modeling workflow, aiming to evaluate
the sensitivity of model outputs to small perturbations in
input parameters near a nominal value. Typically, it
involves partial derivatives or finite differences
computed using one-at-a-time (OAT) perturbations. This
method provides detailed information on how specific
inputs influence outputs at a particular point in the
parameter space (Rezaei et al., 2016a). Techniques such
as the finite difference method, direct differential
method, Green’s function, and complex-step derivative
approximation have been developed to perform LSA
with high precision (De Pauw, 2005). Furthermore, an
OAT approach (local or global) does not provide direct
information about higher- and total-order parameter
interaction as is provided by variance-based SA (Saltelli
et al,, 2008). However, by evaluating the parameter
sensitivities in time, insight is given about potential
interaction when similar individual effects are observed.
The latter can be quantified by a collinearity analysis
(Brun et al., 2001), but will be done graphically in this
contribution. A dynamic sensitivity function can be
written as follows:
s - 2 [1]
where SF(t), y(t), and x denote the sensitivity function,
output variable and parameter respectively. If an output
variable (y) significantly changes (evaluated by
calculating the variance or coefficient of determination or
by visualizing in a scatter plot) due to small changes of
the parameter of interest x, it is called a sensitive
parameter.

This partial derivative can be calculated analytically
or numerically with a finite difference approach by a
local linearity assumption of the model on the
parameters. Local sensitivity functions evaluate the
partial derivative around the nominal parameter values.
The central differences of the sensitivity function are
used to rank the parameter sensitivities and can be
expressed as follows:

=D X (2]

Al X: +AX;)—y(t,X: — AX;
cas= X0 _ A D 7Y(GX) ~A%)
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where pr is the perturbation factor, x; is the parameter
value and Ax; is the perturbation, CAS is the Central
Absolute Sensitivity, CTRS is the Central Total Relative
Sensitivity analysis, and CPRS is a Central Parameter
Relative Sensitivity. Since the parameters and variables
have different orders of magnitude for which the
sensitivity is calculated, direct comparison of the
sensitivity indices with CAS is not possible. Hence,
recalculation towards relative and comparable values is
needed. In order to compare the sensitivity of the
different parameters towards the different variables,
CTRS is preferred. CPRS is sufficient when the
sensitivity of different parameters is compared for a
single variable, i.e., soil-water content.

Time-variant LSA is particularly wuseful in
hydrological modeling, as it reveals which parameters are
influential during specific simulation periods, such as
during irrigation or drought phases. This temporal
sensitivity insight allows modelers to prioritize key
variables, minimize the number of parameters to be
calibrated, and fix insensitive ones to their measured
values, improving computational efficiency and reducing
equifinality. While LSA is limited in its ability to capture
interactions between parameters or global effects, it
remains an essential step for initial model assessment and
parameter screening (Rezaei, 2016).

5.3. Classical sensitivity analysis

In addition to global and local methods, classical
sensitivity analysis—often referred to as manual
sensitivity analysis—provides a pragmatic approach to
evaluating model responsiveness. This technique
primarily involves systematic alterations to key model
settings, such as boundary conditions, root distribution
profiles, and spatial discretization schemes, to observe
the resulting variations in output (Rezaei et al., 2016).
Unlike global or local methods, classical sensitivity
analysis does not rely on statistical or numerical
algorithms. Instead, it offers a practical route for
modelers to investigate how adjustments in conceptual
and structural components influence simulation
outcomes, often using expert knowledge or field
experience to guide the variations.

This approach typically includes modifying boundary
condition scenarios (e.g., switching between free
drainage, fixed pressure heads, or deep drainage), testing
various root distribution depths and densities, or
adjusting root water uptake functions (Hupet et al., 2002;
Wollschlager et al., 2009). Other influential factors may
include changes in the leaf area index (LAI), the
extinction coefficient of radiation, or the resolution and
configuration of spatial discretization grids (Carrera-
Hernandez et al., 2012). The overarching aim is to
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minimize the mismatch between observed and simulated
data through iterative trial-and-error adjustments.
Although classical sensitivity analysis lacks the
quantitative robustness of global or local methods, it
remains a valuable diagnostic tool, particularly in
complex models where boundary and structural
assumptions strongly influence simulation accuracy.

6. Field-Scale Heterogeneity through Quasi-3D
Modeling

Field-scale soil water dynamics are intrinsically governed
by spatial heterogeneities in soil hydraulic properties,
which control the storage and conduction of water
(Rezaei et al., 2017). Furthermore, spatial variations in
bottom boundary conditions, particularly groundwater
level (GWL) fluctuations, and topography are first-order
controls on soil water content variability, water flow
paths, and root water uptake. Despite their importance,
efficient techniques for characterizing this physical
variability at relevant scales remain a primary objective
of hydrological research (Teixeira et al., 2014).

Consequently, developing irrigation management
strategies that respond to heterogeneous field
conditions—optimizing soil water status across large
fields with variable soil, groundwater, and topography—
is essential for sustainable agriculture. While modern
technologies like automated sensor networks can
quantify soil-water status and flow processes, their
deployment is often limited to discrete points due to cost
and labor constraints (Bastiaanssen et al., 2004). As a
powerful alternative, advanced numerical modeling of
vadose zone processes provides a framework to simulate
the critical interactions between soil, vegetation,
atmosphere, and groundwater, thereby enabling
improved control of soil water status for precision
irrigation (Zhu et al., 2012).

Due to the complexity of these hydrological systems,
models often employ conceptual simplifications (Rezaei
et al., 2017). A common simplification is the assumption
of one-dimensional (1D) vertical flow, which implies; i.
Lateral flow and transport are negligible (Sherlock et al.,
2002; Tian et al., 2012), an assumption that fails when
the capillary fringe is involved (Abit et al., 2008). ii. The
bottom boundary is represented simplistically (e.g.,
constant head or unit-gradient drainage) rather than a
dynamically simulated water table (Carrera-Hernandez et
al., 2012). iii. Soils are treated as effectively
homogeneous within layers, with isotropic hydraulic
properties (Niswonger and Prudic, 2009). iv. The porous
matrix is rigid, and fluid density is independent of solutes
or temperature (Kuznetsov et al., 2012).

These  simplifications, while  computationally
efficient, introduce significant structural uncertainty.
Consequently, key challenges include evaluating model
uncertainty and sensitivity across scales, managing
computational cost, and ultimately leveraging models for

irrigation optimization (Wohling et al., 2009; Wohling et
al., 2008). Model outputs are sensitive to uncertainties in
structure, input parameters, the geometry of soil layers,
and boundary conditions (Vrugt et al., 2008). While
methods like Bayesian inference, Monte Carlo
simulation, and data assimilation (e.g., Ensemble Kalman
Filter) have been employed to quantify these
uncertainties, they are primarily applied at the plot scale
(Carrera-Hernandez et al., 2012; Li et al., 2015; Verbist
et al.,, 2012; Verma et al.,, 2009; Vrugt et al., 2008;
Wohling and Vrugt, 2008). A significant gap therefore
persists between field-scale modeling capabilities and
practical irrigation management.

The central challenge for regional water management
is to accurately simulate integrated water flow—from the
soil surface through the vadose zone to the
groundwater—within a spatially variable context.
Generalizing management from a single 1D model plot to
an entire field is fraught with uncertainty. In response,
two numerical approaches have emerged; A) Fully 3D
models that solve the Richards equation in three
dimensions (Simiinek et al., 2024a). These models are
often computationally prohibitive for large-scale
agricultural  applications unless high-performance
computing is used (Kuznetsov et al., 2012). B) Quasi-3D
integrated models, which offer a pragmatic and
computationally efficient alternative. This approach
tightly couples an array of 1D vadose zone models
(simulating vertical processes) with a 2D groundwater
model (simulating lateral saturated flow and water table
dynamics) (Arnold et al., 1993; Saxton et al., 1974;
Simtnek et al., 2006b; Therrien et al., 2009; van Dam et
al., 1997). In such modelling setup, the field is
represented by a collection of parallel non-interacting
vertical columns representing different field conditions in
terms of soil saturated hydraulic conductivity (Kj)
groundwater level (GWL) and root zone-first layer depth
(FLD), etc. which can be obtained from different
methodologies (Tables 3 and 4). This architecture
explicitly captures the critical interaction between the
unsaturated zone and spatial variations of model
parameters and of boundary conditions (e.g., dynamic
groundwater table) other variables (e.g., soil hydraulic
properties) across the field, the key drivers of field-scale
soil moisture patterns (Rezaei et al., 2017). In such case,
the uncertainty in model output (quasi 3D modeling
approach) can be reduced when using the high-resolution
information while a fast performance can be achieved.
Ultimately, these approaches aim to optimize variable
irrigation requirement within the field using a 2D
modeling technique (quasi 3D).

Despite their advantages, the application of these
integrated models for operational irrigation is
complicated by parameterization challenges and
computational demands, limiting their feasibility for end-
users like farmers. Future research must focus on
simplifying the parameterization of quasi-3D frameworks
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by integrating remote and proximal sensing data to make
them a practical tool for field-scale precision water
management.

7. Future Perspectives

Advancements in precision irrigation modeling hinge
upon integrating continuous long-term field data with
cutting-edge technologies such as Internet of Things
(IoT) sensors and artificial intelligence (AI) for real-time
monitoring and adaptive management. Future research
should emphasize the development of hybrid modeling
frameworks that couple crop growth dynamics with soil
hydrology, remote sensing inputs, and machine learning
algorithms to enhance prediction accuracy under variable
climatic and edaphic conditions.

Future advancements in precision irrigation modeling
will be increasingly driven by Al and Machine Learning
(ML). ML algorithms can serve as powerful surrogates
(meta-models) for computationally expensive process-
based models, enabling rapid scenario analysis and
optimization. Furthermore, ML techniques are adept at
extracting patterns from large, heterogeneous datasets
generated by IoT sensors, proximal sensing, and remote
sensing platforms. Their integration into hybrid modeling
frameworks can enhance parameter estimation, facilitate
data assimilation for real-time model updating, and
improve the prediction of crop water needs under
complex, non-linear conditions that are challenging for
traditional models.

A persistent hurdle remains the scaling of models
from the plot to the landscape and regional level. This
transition is hampered by inherent spatial heterogeneity
of soil and crop properties, data scarcity for regional
parameterization, and  significant = computational
demands. Addressing these challenges requires a multi-
faceted approach: (1) improved spatially explicit
parameterization through advanced geostatistics and the
integration of remote sensing data; (2) the development
of probabilistic frameworks and ensemble modeling
techniques (e.g., Bayesian averaging) to quantify and
propagate uncertainty across scales; and (3) the creation
of multi-scale modeling architectures that balance
computational efficiency with physical realism.

Scaling these models from plot to landscape and
regional levels remains a formidable challenge due to
inherent soil and crop heterogeneity, data scarcity, and
computational constraints. Addressing these issues
requires improved spatially explicit parameterization,
probabilistic approaches for uncertainty quantification,
and enhanced user-friendly platforms that facilitate
stakeholder engagement and decision support.

Finally, for these technological advances to realize
their full impact, they must be translated into practical,
accessible, and economically viable tools for end-users.
Future research must therefore focus not only on
algorithmic innovation but also on developing user-
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friendly platforms that provide clear decision support to
farmers and water managers. Embedding these tools
within supportive policy frameworks and addressing key
adoption barriers—such as initial investment costs,
technical expertise requirements, and perceived risks—is
crucial for bridging the gap between research and
widespread  practical  implementation.  Moreover,
embedding these technological advances within
sustainable management frameworks and agricultural
policies is crucial to ensure practical adoption and
maximize environmental and economic benefits.
Interdisciplinary collaborations among agronomists,
hydrologists, data scientists, and policymakers will be
pivotal to drive innovations that foster resilient and
resource-efficient irrigation systems. Ultimately, these
efforts will contribute to climate-smart agriculture by
enabling adaptive irrigation strategies tailored to site-
specific conditions, thereby enhancing food security and
conserving water resources globally.

8. Conclusion

Precision irrigation is essential for improving water use
efficiency and ensuring sustainable agriculture amid
climate variability and resource constraints. This review
highlights the critical role of integrated modeling
approaches—combining crop growth models, soil
hydrological simulations, and inverse parameter
estimation—in  enabling data-driven, site-specific
irrigation management, promoting resilient and resource-
efficient agriculture under changing climatic conditions.
These models simulate the complex soil-plant—
atmosphere interactions, optimizing irrigation timing and
amounts to reduce water loss and enhance crop yield.
While models such as WOFOST, CERES, AquaCrop,
HYDRUS, SWAP, and SWAT have advanced our
understanding of crop and soil water dynamics,
challenges remain in scaling up, incorporating spatial
variability, and addressing data scarcity. Ultimately,
integrating advanced modeling with real-time monitoring
and decision-support systems will be pivotal in
transforming irrigation practices. However, for this
transformation to be successful, these systems must be
designed to be not only scientifically robust but
also user-friendly, cost-effective, and accessible to
farmers. Interdisciplinary collaborations that include
agronomists, hydrologists, data scientists, economists,
and policymakers are essential to develop economically
and environmentally sustainable variable rate irrigation
strategies that are adopted on the ground, thereby
promoting resilient and resource-efficient agriculture
under changing climatic conditions.
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