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ABSTRACT 

Sustainable agriculture demands innovative strategies to optimize water use amid growing climatic uncertainties, resource 

limitations, and to bolster the resilience of farming systems worldwide in the face of climate change. This review provides a critical 

synthesis of state-of-the-art modeling approaches that integrate crop growth dynamics with soil hydraulic processes to support 

precision irrigation management. Emphasizing the vadose zone's central role as the critical interface governing soil-plant-water 

interactions, the paper examines a suite of widely used, process-based crop models (e.g., WOFOST, CERES, AquaCrop, DSSAT, 

APSIM) alongside specialized hydrological models (e.g., HYDRUS, SWAP, SWAT). It highlights their synergistic capability to 

simulate the complex, nonlinear feedback between root water uptake, soil moisture dynamics, evapotranspiration, and solute 

transport, which is fundamental for predicting crop water requirements and responses to irrigation. The primary challenge for this 

approach is the accurate determination of often unknown or highly variable soil hydraulic and crop parameters. This review 

demonstrated that 1) Advanced inverse modeling techniques provide a powerful alternative to direct measurements by using 

optimization algorithms to estimate critical parameters from field data. 2) Sensitivity analysis (both local and global) is indispensable 

for evaluating model robustness, identifying influential parameters, and mitigating calibration issues like equifinality. 3) Well-

calibrated, integrated models enable a robust, physically sound framework for generating site-specific irrigation schedules, moving 

beyond traditional homogeneous management. We also identify key challenges, including data scarcity and computational demands. 

To address these, we advocate for the future development of quasi-3D hybrid modeling platforms that leverage high-resolution data 

from easily available resources, laboratories, remote sensing, and IoT networks. This integrative approach holds significant promise 

for advancing next-generation precision irrigation, enhancing water use efficiency, and strengthening global agricultural resilience. 

 

Keywords: Precision irrigation, Inverse modeling, Sensitivity Analysis, Soil hydraulic properties, Vadose Zone. 

 

1. Introduction 

The fast growing global population coupled with the 

escalating impacts of climate change and increasing 

freshwater scarcity, has intensified the demand for 

sustainable and efficient agricultural water management 

(FAO, 2023). Precision irrigation has therefore emerged 

as a critical strategy to optimize water use efficiency, 

enhance crop productivity, and minimize the 

environmental impacts (Lakhiar et al., 2024). Achieving 

effective precision irrigation requires a comprehensive 

understanding of the complex interactions within the 

soil–plant–atmosphere continuum (SPAC) framework, as 

well as to consider about the spatial and temporal 

variability in soil moisture, crop water demand, and 

environmental conditions. The vadose zone, which 

extends from the soil surface to the groundwater table, is 

the critical interface where these interactions occur. Its 

dynamics are governed by complex, nonlinear physical 

processes, primarily described by Richards' equation for 

variably saturated water flow and the convection-

dispersion equation for solute transport. Accurately 

simulating these processes is fundamental to predicting 

crop water requirements. 

 The application of process-based models often faces a 

significant challenge like the accurate determination of key 

soil hydraulic properties (e.g., saturated hydraulic 

conductivity, van Genuchten parameters) and crop-related 

properties (e.g., root growth, crop coefficients). These 

parameters are often highly variable in space and time and 

are difficult to measure directly at relevant scales. These 

difficulties lead to the adopt the inverse 

modeling techniques, where model parameters are estimated 

by minimizing the discrepancy between simulated outputs 

and observed field data (e.g., soil moisture time series and 

yield) using optimization algorithms. Successing of this 

calibration process is typically evaluated by statistical 

metrics like the Root Mean Square Error (RMSE) or the 

Nash-Sutcliffe efficiency coefficient. 

 Furthermore, the robustness of these models must be 

evaluated under uncertainty. Sensitivity Analysis (SA) 

serves this purpose by quantifying how uncertainty in the 

model inputs (parameters, initial conditions) contributes 

to uncertainty in model outputs. SA methods range from 

local approaches, evaluating perturbations around a 

nominal parameter set, to global methods, which explore 

the entire parameter space. This process is indispensable 

for identifying the most influential parameters, guiding 

data collection efforts, and diagnosing model structure. 

 Traditional irrigation scheduling methods, which 

often rely on empirical guidelines or fixed calendars, are 

limited in their capacity to address the heterogeneity 

inherent in agricultural fields (Ahmed et al., 2023). These 
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conventional approaches may lead to either under- or 

over-irrigation, resulting in yield loss or excessive water 

consumption (Umutoni and Samadi, 2024). In contrast, 

physically based and process-oriented models offer 

robust frameworks to simulate dynamic soil water 

movement, crop growth, and evapotranspiration 

processes (Rezaei, 2016). Crop growth models such as 

WOFOST (WOrld FOod STudies), CERES (Crop 

Environment Resource Synthesis), and AquaCrop (Crop-

Water Productivity Model of FAO) have been 

extensively utilized to assess crop responses to variable 

irrigation regimes and climate variability (Moroozeh et 

al., 2023; Rezaei, 2016). Simultaneously, hydrological 

models including HYDRUS (Windows application for 

simulating water, heat, and solute movement), SWAP 

(Soil Water Atmosphere Plant), and SWAT (Soil & 

Water Assessment Tool) provide detailed insights into 

soil water and solute transport mechanisms within the 

vadose zone, enabling better prediction of water 

availability for plants (Rezaei, 2016; Rezaei et al., 2021; 

Šimůnek et al., 2024b). Furthermore, the escalating 

impacts of climate change introduce additional variability 

and uncertainty, necessitating robust modeling 

frameworks that can adapt to changing conditions. 

 A pivotal aspect of the successful application of these 

models lies in the accurate determination of soil 

hydraulic and crop-related parameters (Rezaei et al., 

2016a; Šimůnek et al., 2024b). Inverse modeling 

techniques have gained prominence as powerful tools for 

parameter estimation, enhancing model calibration by 

reconciling observed field data with simulated outputs 

(Rossi et al., 2015; Wöhling et al., 2009; Zhang et al., 

2018). Furthermore, sensitivity analysis methods 

contribute to identifying key parameters influencing 

model predictions and to evaluating model robustness 

under uncertainties (Rezaei et al., 2016a). 

 Despite significant progress, challenges remain in 

scaling these models from plot to regional levels, 

incorporating high-resolution spatial variability, and 

dealing with data limitations. Addressing these 

challenges necessitates the development of integrated 

modeling platforms that couple crop growth and soil 

hydrology models with advanced data assimilation 

techniques and remote sensing inputs. This review aims 

to synthesize current advances in crop growth and 

hydrological modeling as applied to precision irrigation. 

It highlights the principles, applications, and limitations 

of key modeling frameworks, including inverse modeling 

and sensitivity analysis, and discusses their role in 

improving irrigation management decisions. By bridging 

modeling techniques with emerging technologies, this 

study contributes to the foundation for developing next-

generation decision support systems that promote 

sustainable water use and enhance crop productivity 

under changing environmental conditions. This review 

also acknowledges the research limitations inherent in 

these integrated approaches, particularly concerning data 

scarcity, scaling challenges, and computational demands, 

and discusses pathways to overcome them. 

 

2. Modeling Approach 

Achieving an optimal balance between water supply and 

crop water demand is a central challenge in sustainable 

agricultural water resource management. The vadose 

zone, encompassing both the soil matrix and root zone, 

represents a complex environment governed by highly 

nonlinear and dynamic interactions (Šimůnek et al., 

2024a). Traditional irrigation scheduling methods often 

fall short due to limitations such as the high cost of 

sensor deployment, difficulty in acquiring accurate in situ 

or laboratory measurements, and limited adaptability to 

variable field conditions (Rezaei et al., 2021). As a result, 

modeling approaches have gained traction as effective 

alternatives for simulating irrigation timing and 

quantities. 

 In recent decades, there has been a marked transition 

from allocation-based methods to data-driven and 

quantitative irrigation management strategies 

(Elmaloglou and Malamos, 2003; Jenkins and Block, 

2024; Li et al., 2012; Paudyal and Dasgupta, 1990; 

Raman et al., 1992; Sanaee-Jahromi et al., 2001; Violino 

et al., 2023). At the core of this evolution lies the 

development and application of mathematical, numerical, 

conceptual, and physically-based models. These models 

can function independently or be integrated with crop 

growth and hydrological models to facilitate more 

precise and responsive irrigation planning (Rezaei, 

2016). Their widespread adoption in irrigation system 

design and management underscores their practical 

values. 

 Modeling approaches offer several advantages. They 

provide a systematic and replicable framework for 

quantifying complex processes within the vadose zone, 

including soil moisture dynamics, evapotranspiration, 

solute transport, and plant-water interactions (Jones et al., 

2017). Furthermore, these models can be calibrated to 

estimate crop water requirements under varying climatic 

conditions, soil properties, salinity and sodicity levels, 

and crop types (Rezaei et al., 2016a; Rezaei et al., 2021; 

Šimůnek et al., 2024a). Such integrative modeling 

frameworks support the implementation of precision 

irrigation and contribute to optimizing water use 

efficiency in agriculture as illustrated in the conceptual 

framework in Figure 1.  
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2.1. Crop growth modeling 

Crop growth models are essential tools for understanding 

plant development and evaluating the effects of water 

and nutrient management on crop performance 

(Kundathil et al., 2023). Over the past three decades, 

numerousm models have been developed to simulate 

crop growth and soil–water interactions with varying 

degrees of complexity, including statistical, mechanistic, 

deterministic, stochastic, static, dynamic, descriptive, and 

explanatory frameworks (Rauff and Bello, 2015; Sargun 

and Mohan, 2020; Vazifedoust et al., 2008) These 

models form the basis of decision support systems for 

irrigation and fertilization scheduling, climate impact 

assessments, and sustainable agricultural planning. 

 Typically grounded in soil water balance principles 

and yield–water relationships, crop models are employed 

to simulate plant responses to varying environmental and 

management conditions. Applications include assessing 

irrigation strategies (Darouich et al., 2014), evaluating 

climate change scenarios (Gobin, 2010; Semenov, 2009), 

designing and managing irrigation systems (Darouich et 

al., 2014; Li et al., 2011; Shang and Mao, 2006), 

investigating water-saving practices (Fang et al., 2010; 

Gongalves et al., 2007), and testing the feasibility of 

deficit irrigation (Geerts et al., 2010; Salemi et al., 2011). 

These models consider key variables such as weather 

patterns, soil characteristics, crop traits, and management 

practices to simulate plant growth dynamics across time. 

By enabling scenario analysis, crop models provide 

valuable insights for optimizing water and nutrient use, 

improving crop yield, and supporting resilient farming 

systems. 

 Despite their benefits, crop models are subject to 

limitations. These models are typically grounded in key 

assumptions such as homogeneity within field units, 

simplified representations of root architecture and water 

uptake, and often neglect complex interactions with 

pests, diseases, and micronutrient limitations. Their 

accuracy depends heavily on reliable input data (e.g., 

weather, soil, and crop parameters), proper calibration 

and validation, and, in some cases, advanced 

computational resources and modeling expertise (see 

Table 1 references). Table 1 summarizes several widely 

used crop growth models and their respective 

applications. 

 

2.2. Hydrological modeling  

Despite the significant contributions of crop growth 

models to agricultural productivity assessment, their 

hydrological components often rely on oversimplified 

assumptions such as fixed rooting depths and static field 

capacity concepts. These limitations underscore the need 

for dedicated hydrological modeling approaches capable 

of accurately simulating water dynamics and solute 

transport within the vadose zone—a region characterized 

by highly nonlinear, heterogeneous, and dynamic 

processes. Since the early 1970s, soil–water modeling 

has evolved from empirical approximations to 

sophisticated, physically-based formulations that enable 

the exploration of interactions within the soil–plant–

atmosphere continuum(Bultot and Dupriez, 1976; 

Neuman et al., 1974; Toksoz and Kirkham, 1971; 

Zaradny and Feddes, 1979). Early models such as the 

Stanford Watershed Model (Crawford and Burges, 1966). 

laid the conceptual foundation for simulating watershed 

hydrology and remain historically significant in shaping 

the trajectory of modern modeling frameworks. 

 Hydrological models are often classified according to 

their underlying assumptions, complexity, spatial and 

temporal resolution, and computational methodologies. 

First, based on mathematical structure, models are 

divided into deterministic and stochastic classes 

(Ghonchepour et al., 2021). Deterministic models yield a 

unique solution for a given set of inputs, suitable for 

mechanistic analyses with well-defined boundary 

conditions. Stochastic models incorporate random 

variables or probabilistic parameters to account for 

natural variability and data uncertainty, making them 

more adaptable to real-world complexities (Jajarmizadeh 

et al., 2012). Second, temporally, models can be static, 

providing steady-state approximations without 

considering temporal evolution, or dynamic, which 

simulate time-dependent processes. Dynamic models are 

further differentiated as event-based—suited for 

simulating storm events or irrigation cycles—and 

continuous, which represent long-term processes like 

seasonal recharge and evapotranspiration. 

 Third, according to their physical basis, models are 

categorized as empirical, conceptual, or physically-based. 

Empirical (or data-driven) models rely solely on 

statistical correlations derived from historical input–

output datasets and are useful where physical insight is 

limited (Hu et al., 2021). Conceptual models introduce 

simplified process representations, often through 

interconnected reservoirs simulating rainfall infiltration, 

percolation, surface runoff, and drainage. These models 

strike a balance between realism and manageability but 

demand rigorous calibration. Physically-based models, 

also referred to as mechanistic models, employ first-

principle equations such as Richards’ equation for water 

flow and Fickian-based formulations for solute transport 

(Feng et al., 2025). These models simulate the spatial and 

temporal evolution of state variables—such as water 

content, matric potential, and solute concentration—

using partial differential equations that require 

discretization and numerical solution. Their strength lies 

in their predictive capacity and process fidelity, though 

they necessitate substantial data input, including soil 

hydraulic properties, boundary fluxes, and 

meteorological forcing (Feng et al., 2025). 

 Fourth, with regard to spatial representation, 

hydrological models are typically lumped or distributed. 

Lumped models simplify spatial variability by 
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aggregating inputs and outputs over entire fields or 

catchments, facilitating rapid analysis with minimal data 

requirements but assiuming hetrogenity (Hu et al., 2021). 

In contrast, distributed models incorporate spatial 

heterogeneity in land use, topography, soil types, and 

hydraulic properties, enabling fine-scale resolution of 

spatial patterns in water and solute fluxes (Fenicia et al., 

2016). While computationally demanding, distributed 

models are indispensable for site-specific irrigation 

management and landscape-scale hydrological 

assessments. 

 Fifth, based on computational procedures, models are 

either analytical or numerical. Analytical models offer 

closed-form solutions to governing equations and are 

valued for their elegance and mathematical clarity, 

though their applicability is restricted to idealized 

conditions with uniform properties and simple 

boundaries. Numerical models—utilizing finite 

difference, finite element, or finite volume methods—are 

capable of solving complex systems with nonlinearities, 

variable boundary conditions, and multi-domain coupling 

(Fenicia et al., 2016). These models generate outputs in 

the form of spatial-temporal distributions of state 

variables, which can be visualized and interpreted to 

inform irrigation planning, salinity management, or 

drainage system design (Rezaei, 2016). 

 Ultimately, the selection of a hydrological model 

must be guided by the specific objectives of the study, 

the scale of application, available data, and 

computational resources. Physically-based numerical 

models, although data- and resource-intensive, provide 

the highest level of process representation and are 

increasingly being integrated with crop models to 

improve the sustainability and precision of agricultural 

water management. Table 2 presents an overview of 

widely adopted hydrological models and their key 

characteristics. 

 

3. Soil Hydrological Model  

Over recent  decades, substantial progress has been made 

in conceptualizing and mathematically modeling water 

flow and solute transport in the vadose zone. Numerous  

analytical and numerical models have emerged to 

simulate water and solute movement across soil 

profiles—from the surface to the groundwater table. 

Among them, the Richards equation (Richards, 1931) for 

variably saturated flow and the convection–dispersion 

equation for solute transport based on Fick’s law remain 

fundamental tools in vadose zone hydrology. 

 Deterministic solutions of these equations are widely 

applied to predict water and solute behavior under 

various environmental conditions and to interpret 

laboratory and field experiments (Šimůnek et al., 2024a). 

These models serve as powerful tools for extrapolating 

findings across diverse soil types, cropping systems, 

climatic conditions, and management practices (Šimůnek 

et al., 2013). Modeling approaches range from analytical 

solutions for idealized systems to fully coupled 

numerical schemes that incorporate complex nonlinear 

and transient processes, such as non-equilibrium flow or 

reactive solute transport (van Genuchten et al., 2014).  

 Despite the availability of advanced numerical 

models, their practical implementation often requires 

extensive effort in data preparation, mesh design, and 

output visualization. To overcome these limitations and 

promote broader use, Šimůnek et al. (2006b) developed 

HYDRUS-1D, a user-friendly, Windows-based interface 

for simulating variably saturated water flow and 

heat/solute transport. This platform solves the Richards 

equation and the advection–dispersion equations using 

Galerkin-type finite element methods (Celia and Binning, 

1992), while also incorporating root water uptake, dual-

porosity, and dual-permeability flow domains. It supports 

vertical, horizontal, and inclined flow orientations, and 

can handle a wide range of boundary conditions, 

including atmospheric, prescribed head or flux, free 

drainage, and constant head conditions. 

 HYDRUS-1D also includes an inverse modeling 

module based on the Levenberg–Marquardt optimization 

algorithm (Levenberg, 1944; Marquardt, 1963) for 

estimating soil hydraulic and solute transport parameters 

using transient or steady-state observations (Šimůnek et 

al., 2013). The HYDRUS family has since expanded to 

include HYDRUS-2D/3D (Šimůnek et al., 2006a; 

Šimůnek et al., 2006b), capable of simulating water, heat, 

and solute transport in two- and three-dimensional 

variably saturated media. The latest release, HYDRUS 

2024, offers enhanced functionality for simulating 

complex soil–plant–atmosphere interactions (Šimůnek et 

al., 2024a). Collectively, these models constitute a 

robust, flexible platform for investigating the dynamics 

of water and solutes in heterogeneous, structured, and 

reactive soils under diverse environmental and 

agronomic scenarios. 

 

4. Inverse Modeling and Parameter Estimation 

Accurate estimation of soil hydraulic properties is 

essential for enhancing water use efficiency in 

hydrological modeling (Rezaei et al., 2016a; Šimůnek 

and Hopmans, 2002). However, direct measurement of 

these parameters in the laboratory or field is often labor- 

intensive, costly, or insufficiently accurate—particularly 

when scaling up to field applications (Verbist et al., 

2012; Wöhling et al., 2008). Therefore, model calibration 

becomes a critical step, involving the adjustment of 

model inputs—such as hydraulic parameters, initial 

states, and boundary conditions—to minimize 

discrepancies between simulated and observed soil 

moisture dynamics (Šimůnek et al., 2012). Figure 2 

represents a schematic of inverse modeling and 

parameter estimations. 
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Fig 2. A schematic of inverse modeling and parameter estimations, illustrating observed data can be used for sensitive model 

parameter estimations. 

 

Traditionally, calibration has been conducted through 

manual trial-and-error methods. While conceptually 

straightforward, this approach becomes cumbersome, 

subjective, and inefficient when dealing with complex 

systems and a high number of interacting parameters. To 

address these limitations, researchers have developed 

automated calibration techniques, particularly inverse 

modeling, which offers an objective and systematic 

alternative (Mertens et al., 2005). One widely used 

optimization algorithm in inverse modeling is the 

Levenberg–Marquardt method, which facilitates single-

objective parameter estimation by iteratively minimizing 

the difference between observed and simulated data 

(Abbasi et al., 2004; Abbasi et al., 2003; Jacques et al., 

2012; Liu et al., 2023; Šimůnek et al., 2013). 

 Inverse modeling has proven especially valuable for 

estimating unsaturated soil hydraulic parameters from 

transient data sets in both laboratory and field conditions. 

As defined by Hopmans et al. (2002), it is a process that 

infers unknown causes (i.e., hydraulic parameters) from 

observed effects (e.g., water content or pressure head), in 

contrast to direct modeling. This methodology typically 

relies on solving the Richards equation, enabling the 

simultaneous estimation of the soil water retention curve 

and the unsaturated hydraulic conductivity function. The 

key advantages of inverse modeling include: i) Greater 

flexibility in defining boundary conditions for transient 

experiments; ii) Simultaneous determination of multiple 

hydraulic functions; iii) Enhanced accuracy and speed of 

parameter optimization; and iv) Applicability in field 

settings under variable and non-ideal boundary 

conditions (Šimůnek et al. (2024a); Hopmans et al., 

2002; Vrugt et al., 2008; Wöhling and Vrugt, 2011). 

 The inverse modeling approach is based on 

minimizing the objective function which expresses the 

discrepancies between the simulated and observed 

values. Despite these advantages, inverse modeling is not 

without challenges. In the optimization process, an 

objective function is measuring an agreement between 

measured and simulated data by statistic criteria such as 

the root-mean-square errors (RMSE), the coefficient of 

determination (r2), and the Nash–Sutcliffe coefficient of 

model efficiency (Ce). It is directly or indirectly related to 

the adjustable parameters to be fitted. Minimizing the 

objective function generates the best-fit parameters. 

Maximum probability density function (pdf) and a 

minimum least-squares criterion should be achieved 

(Šimůnek and Hopmans, 2002). The objective functions 

can be around any observed variable which is used as 

inverse input data such as soil water content, infiltration 

and water retention data for all soil layers with unit or 

different weighting. When multiple local minima or a 

global minimum occur in a range of parameter values on 

the basis of the convexity of the objective function 

(which can be increased by inclusion of prior information 

(initial input values of parameters)), the model solution is 

called non-unique. Non-uniqueness, non-identifiability, 

and instability often compromise parameter estimation. 

Non-uniqueness arises when multiple parameter sets 

yield similar model outputs, often due to flat or convex 

objective function surfaces. Providing prior information, 

such as plausible parameter bounds, can help mitigate 

this issue. Non-identifiability occurs when distinct 

parameter combinations produce indistinguishable 

system responses, complicating the derivation of a 

unique solution. Instability, on the other hand, reflects 

sensitivity to small errors in input data or model 

structure, leading to disproportionately large variations in 

estimated parameters. Together, these issues contribute to 

the ill-posedness of inverse problems (Chou and Voit, 

2009; Rezaei et al., 2016a). 

 To address these challenges, sensitivity analysis is 

commonly employed (Chou and Voit, 2009; Rezaei, 

2016; Rezaei et al., 2016a). This involves systematically 

evaluating how model outputs respond to changes in 

individual parameters, thereby identifying the most 

influential ones. By focusing on a reduced set of sensitive 

parameters, the risk of over-parameterization and 
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Fig 3. A schematic of different set of initial values e.g., hydraulic properties on model predictions, illustrating sensitivity analysis. 

 

identifiability issues can be reduced (Hopmans et al., 

2002). The effectiveness of sensitivity analysis is 

influenced by several factors, including the number and 

type of parameters being optimized, the quality of 

observational data, and the structure of the model. Rocha 

et al. (2006) and van Genuchten et al. (2012) highlight 

the use of one-at-a-time sensitivity approaches for 

refining inverse modeling procedures and reducing 

uncertainty in simulations. 

 In sum, inverse modeling represents a robust, data-

driven approach for parameter estimation in vadose zone 

hydrology, especially when paired with optimization and 

sensitivity analysis techniques. Its integration into 

hydrological modeling frameworks significantly 

enhances model reliability and predictive capacity under 

field conditions. 

 

4.1. Initial values of soil hydraulic parameters 

Accurate simulation of  soil water dynamics  and solute 

transport requires a thorough understanding of the 

interactions among soil, water, atmosphere, and plant 

systems. Within this context, reliable initial estimates of 

soil hydraulic parameters, particularly soil water content, 

are critical. The accuracy of the inverse modeling process 

strongly depends on these initial values, as they influence 

the convergence, stability, and reliability of the 

optimized parameters (Figures 2 and 3). Therefore, 

providing well-constrained and physically meaningful 

initial estimates is essential for both forward and inverse 

modeling of water, solute, and energy fluxes in the 

vadose zone (Rezaei et al., 2016b). 

 Soil heterogeneity is a fundamental characteristic of 

natural systems, governed by factors such as macropore 

structure, aggregation, texture, and soil layering. These 

physical heterogeneities introduce spatial variability in 

water retention and hydraulic conductivity, which 

directly impact the soil's ability to store and transmit 

water at the field scale (Teixeira et al., 2014). 

Quantifying this variability remains a key research 

challenge, as accurate representation of spatial patterns is 

necessary to improve predictive performance of 

hydrological models. 

 Numerous techniques for characterizing soil 

hydraulic properties have been developed and refined 

over the past decades. Classical methods, such as those 

compiled by Klute (1986) and Dane and Topp (2002), 

involve direct laboratory or field measurements. These 

approaches, while accurate, are often expensive, time-

consuming, and labor-intensive. More recently, state-of-

the-art reviews such as Minasny et al. (2013) have 

introduced novel techniques and highlighted the 

importance of balancing accuracy with practical 

feasibility. An overview of these methods is presented in 

Tables 3 and 4. 

 Given the limitations of direct measurement, indirect 

estimation methods have gained prominence. In 

numerical modeling, soil water retention characteristics 

are typically described using closed-form analytical 

expressions, such as those by van Genuchten or Brooks-

Corey, which require shape parameters as input. These 

parameters are either measured experimentally or 

inferred through fitting procedures using soil water 

retention curve (SWRC) data. To improve efficiency, 

pedotransfer functions (PTFs) are often employed to 

estimate hydraulic parameters based on more readily 

available soil properties (Cornelis et al., 2005). While PTFs 

offer a practical alternative, their accuracy depends on the 

quality and representativeness of the training dataset. 

 Several studies have systematically compared 

different analytical models for representing the SWRC, 

including unimodal and bimodal formulations, and 

evaluated their performance in diverse soil types and 

conditions (Cornelis et al., 2005; Khlosi et al., 2008). 

These approaches contribute to a growing toolbox of 

methodologies aimed at capturing the physical behavior 

of soil water movement, while minimizing the reliance 

on extensive laboratory measurements. 
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5. Sensitivity Analysis 

Sensitivity analysis (SA) is a fundamental step in model 

evaluation, aiming to quantify how variations in input 

parameters or initial conditions influence model outputs 

(Fig. 3). This is particularly critical when input 

parameters are uncertain, poorly defined, or difficult to 

measure directly. By identifying the most influential 

variables, SA improves confidence in model predictions 

and assists in prioritizing data collection and 

experimental design. It is also closely linked to 

uncertainty analysis, which quantifies the total 

uncertainty in model responses arising from uncertain 

inputs (Rocha et al., 2006). Early studies, such as that of 

Dane and Hruska (1983), highlighted challenges in the 

uniqueness of inverse modeling solutions, showing that 

parameter sensitivity is strongly influenced by boundary 

conditions. Hopmans et al. (2002) further emphasized 

that higher parameter sensitivity enhances the 

convergence rate in inverse modeling procedures. 

However, the degree of sensitivity is not constant; it 

depends on multiple factors, including the nature and 

number of optimized parameters, the model structure, the 

numerical scheme, and the quality of the input data 

(Russo et al., 1991). 

 From a methodological perspective, sensitivity 

analysis can be viewed as a form of feature importance 

evaluation and parameter selection within the model 

calibration workflow. In this context, model parameters 

are analogous to "features" in machine learning, and SA 

provides a robust framework for ranking them by their 

influence on predictive outcomes. By identifying and 

retaining only the most sensitive parameters for 

calibration, SA effectively performs dimensionality 

reduction, mitigating the curse of dimensionality, 

reducing the risk of over-parameterization, and 

enhancing the stability and efficiency of the inverse 

modeling process. This function is directly comparable to 

the objectives of feature selection algorithms in statistics 

and machine learning (e.g., regularization techniques like 

LASSO), albeit applied here to process-based physical 

models. 

 To mitigate the issue of non-uniqueness and to 

stabilize the inverse modeling process, it is recommended 

to minimize the number of parameters subject to 

optimization and to constrain insensitive parameters to 

their observed or measured values (Schwartz and Evett, 

2003). This strategy enhances the identifiability of 

critical parameters and reduces computational 

complexity. Time-dependent or dynamic sensitivity 

analysis is particularly valuable in hydrological modeling 

under changing environmental conditions, such as during 

periods of irrigation or drought. It allows for identifying 

the most relevant parameters across specific time 

windows, which can significantly enhance model 

efficiency and accuracy. Several studies have introduced 

summary sensitivity indices to condense temporal 

sensitivity information into interpretable metrics (Rezaei 

et al., 2016a; Abbasi et al., 2003a; Li et al., 2012; 

Mertens et al., 2005; Rocha et al., 2006; Šimůnek and 

van Genuchten, 1996; Verbist et al., 2012; Zhou et al., 

2012). 

 Broadly, sensitivity analysis methods can be 

classified into two main categories (Rezaei et al., 2016a): 

i) Local Sensitivity Analysis (LSA) which evaluates the 

effect of small perturbations in input parameters around a 

nominal value, typically using derivative-based 

approaches. It is computationally efficient but may not 

capture nonlinear or interaction effects in complex 

systems. ii) Global Sensitivity Analysis (GSA) which 

examines the full parameter space by varying inputs 

across their entire distribution, often using Monte Carlo 

or variance-based methods. GSA provides a more 

comprehensive picture of parameter influence, though it 

is more computationally intensive. 

 Overall, sensitivity analysis serves as a diagnostic and 

optimization tool that enhances model transparency, 

improves parameter selection strategies, and ultimately 

strengthens the model's predictive capability. Its 

integration into modeling workflows is essential for 

ensuring robust, reliable simulations in soil-water-plant-

atmosphere systems. While this review focuses on SA as 

the primary method for feature (parameter) selection in 

process-based models, it is acknowledged that other 

statistical and machine-learning-driven feature selection 

approaches exist and could be integrated in future hybrid 

modeling frameworks. 

 

5.1. Global sensitivity analysis 

Global sensitivity analysis is a robust and widely adopted 

framework that quantifies the contribution of input 

parameter uncertainty to the variance observed in model 

outputs. Unlike local methods that assess perturbations 

near a fixed point, GSA considers the entire range of 

parameter values by incorporating probability 

distributions, thus offering a more comprehensive 

understanding of model behavior (Saltelli et al., 2008). 

Several techniques have been developed for GSA, 

including sampling-based approaches such as Monte 

Carlo simulations (Spear and Hornberger, 1980), 

screening methods like the Morris one-at-a-time (OAT) 

procedure (Morris, 1991), and variance decomposition 

methods such as the Sobol indices (Sobol, 1993).  

 Additionally, response surface methodologies allow 

for the replacement of complex process-based models 

with computationally efficient meta-models (Kleijnen et 

al., 1992), while regression-based approaches have been 

employed as simplified alternatives in high-dimensional 

systems (Iman and Helton, 1988). These techniques 

enable the identification of both individual parameter 

effects and their interactions, thereby facilitating model 

simplification and prioritization of calibration efforts. 

Overall, GSA enhances model interpretability and 
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predictive reliability by elucidating which parameters 

most significantly influence the system response. For a 

comprehensive overview of GSA methods and their 

applications in environmental modeling, readers are 

referred to Loosvelt (2013). Each mentioned methods has 

its specific formula to be calculated therefore they are not 

represented here. 

 

5.2. Local sensitivity  

Local sensitivity analysis is a simpler yet foundational 

approach in the modeling workflow, aiming to evaluate 

the sensitivity of model outputs to small perturbations in 

input parameters near a nominal value. Typically, it 

involves partial derivatives or finite differences 

computed using one-at-a-time (OAT) perturbations. This 

method provides detailed information on how specific 

inputs influence outputs at a particular point in the 

parameter space (Rezaei et al., 2016a). Techniques such 

as the finite difference method, direct differential 

method, Green’s function, and complex-step derivative 

approximation have been developed to perform LSA 

with high precision (De Pauw, 2005). Furthermore, an 

OAT approach (local or global) does not provide direct 

information about higher- and total-order parameter 

interaction as is provided by variance-based SA (Saltelli 

et al., 2008). However, by evaluating the parameter 

sensitivities in time, insight is given about potential 

interaction when similar individual effects are observed. 

The latter can be quantified by a collinearity analysis 

(Brun et al., 2001), but will be done graphically in this 

contribution. A dynamic sensitivity function can be 

written as follows: 

[1]                                                                   
y(t)

SF(t)
x


=


 

where SF(t), y(t), and x denote the sensitivity function, 

output variable and parameter respectively. If an output 

variable (y) significantly changes (evaluated by 

calculating the variance or coefficient of determination or 

by visualizing in a scatter plot) due to small changes of 

the parameter of interest x, it is called a sensitive 

parameter.  

 This partial derivative can be calculated analytically 

or numerically with a finite difference approach by a 

local linearity assumption of the model on the 

parameters. Local sensitivity functions evaluate the 

partial derivative around the nominal parameter values. 

The central differences of the sensitivity function are 

used to rank the parameter sensitivities and can be 

expressed as follows: 

[2]                                                                    j f jx p .x = 

[3]    
j

j j j j

x 0 j

(t, x x ) y(t, x x )y(t)
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[4]                           
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where pf is the perturbation factor, xj is the parameter 

value and Δxj is the perturbation, CAS is the Central 

Absolute Sensitivity, CTRS is the Central Total Relative 

Sensitivity analysis, and CPRS is a Central Parameter 

Relative Sensitivity. Since the parameters and variables 

have different orders of magnitude for which the 

sensitivity is calculated, direct comparison of the 

sensitivity indices with CAS is not possible. Hence, 

recalculation towards relative and comparable values is 

needed. In order to compare the sensitivity of the 

different parameters towards the different variables, 

CTRS is preferred. CPRS is sufficient when the 

sensitivity of different parameters is compared for a 

single variable, i.e., soil-water content. 

 Time-variant LSA is particularly useful in 

hydrological modeling, as it reveals which parameters are 

influential during specific simulation periods, such as 

during irrigation or drought phases. This temporal 

sensitivity insight allows modelers to prioritize key 

variables, minimize the number of parameters to be 

calibrated, and fix insensitive ones to their measured 

values, improving computational efficiency and reducing 

equifinality. While LSA is limited in its ability to capture 

interactions between parameters or global effects, it 

remains an essential step for initial model assessment and 

parameter screening (Rezaei, 2016). 

 

5.3. Classical sensitivity analysis  

In addition to global and local methods, classical 

sensitivity analysis—often referred to as manual 

sensitivity analysis—provides a pragmatic approach to 

evaluating model responsiveness. This technique 

primarily involves systematic alterations to key model 

settings, such as boundary conditions, root distribution 

profiles, and spatial discretization schemes, to observe 

the resulting variations in output (Rezaei et al., 2016). 

Unlike global or local methods, classical sensitivity 

analysis does not rely on statistical or numerical 

algorithms. Instead, it offers a practical route for 

modelers to investigate how adjustments in conceptual 

and structural components influence simulation 

outcomes, often using expert knowledge or field 

experience to guide the variations. 

 This approach typically includes modifying boundary 

condition scenarios (e.g., switching between free 

drainage, fixed pressure heads, or deep drainage), testing 

various root distribution depths and densities, or 

adjusting root water uptake functions (Hupet et al., 2002; 

Wollschlager et al., 2009). Other influential factors may 

include changes in the leaf area index (LAI), the 

extinction coefficient of radiation, or the resolution and 

configuration of spatial discretization grids (Carrera-

Hernández et al., 2012). The overarching aim is to 
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minimize the mismatch between observed and simulated 

data through iterative trial-and-error adjustments. 

Although classical sensitivity analysis lacks the 

quantitative robustness of global or local methods, it 

remains a valuable diagnostic tool, particularly in 

complex models where boundary and structural 

assumptions strongly influence simulation accuracy. 

 

6. Field-Scale Heterogeneity through Quasi-3D 

Modeling 

Field-scale soil water dynamics are intrinsically governed 

by spatial heterogeneities in soil hydraulic properties, 

which control the storage and conduction of water 

(Rezaei et al., 2017). Furthermore, spatial variations in 

bottom boundary conditions, particularly groundwater 

level (GWL) fluctuations, and topography are first-order 

controls on soil water content variability, water flow 

paths, and root water uptake. Despite their importance, 

efficient techniques for characterizing this physical 

variability at relevant scales remain a primary objective 

of hydrological research (Teixeira et al., 2014). 

 Consequently, developing irrigation management 

strategies that respond to heterogeneous field 

conditions—optimizing soil water status across large 

fields with variable soil, groundwater, and topography—

is essential for sustainable agriculture. While modern 

technologies like automated sensor networks can 

quantify soil-water status and flow processes, their 

deployment is often limited to discrete points due to cost 

and labor constraints (Bastiaanssen et al., 2004). As a 

powerful alternative, advanced numerical modeling of 

vadose zone processes provides a framework to simulate 

the critical interactions between soil, vegetation, 

atmosphere, and groundwater, thereby enabling 

improved control of soil water status for precision 

irrigation (Zhu et al., 2012). 

 Due to the complexity of these hydrological systems, 

models often employ conceptual simplifications (Rezaei 

et al., 2017). A common simplification is the assumption 

of one-dimensional (1D) vertical flow, which implies; i. 

Lateral flow and transport are negligible (Sherlock et al., 

2002; Tian et al., 2012), an assumption that fails when 

the capillary fringe is involved (Abit et al., 2008). ii. The 

bottom boundary is represented simplistically (e.g., 

constant head or unit-gradient drainage) rather than a 

dynamically simulated water table (Carrera-Hernández et 

al., 2012). iii. Soils are treated as effectively 

homogeneous within layers, with isotropic hydraulic 

properties (Niswonger and Prudic, 2009). iv. The porous 

matrix is rigid, and fluid density is independent of solutes 

or temperature (Kuznetsov et al., 2012). 

 These simplifications, while computationally 

efficient, introduce significant structural uncertainty. 

Consequently, key challenges include evaluating model 

uncertainty and sensitivity across scales, managing 

computational cost, and ultimately leveraging models for 

irrigation optimization (Wöhling et al., 2009; Wöhling et 

al., 2008). Model outputs are sensitive to uncertainties in 

structure, input parameters, the geometry of soil layers, 

and boundary conditions (Vrugt et al., 2008). While 

methods like Bayesian inference, Monte Carlo 

simulation, and data assimilation (e.g., Ensemble Kalman 

Filter) have been employed to quantify these 

uncertainties, they are primarily applied at the plot scale 

(Carrera-Hernández et al., 2012; Li et al., 2015; Verbist 

et al., 2012; Verma et al., 2009; Vrugt et al., 2008; 

Wöhling and Vrugt, 2008). A significant gap therefore 

persists between field-scale modeling capabilities and 

practical irrigation management. 

 The central challenge for regional water management 

is to accurately simulate integrated water flow—from the 

soil surface through the vadose zone to the 

groundwater—within a spatially variable context. 

Generalizing management from a single 1D model plot to 

an entire field is fraught with uncertainty. In response, 

two numerical approaches have emerged; A) Fully 3D 

models that solve the Richards equation in three 

dimensions (Šimůnek et al., 2024a). These models are 

often computationally prohibitive for large-scale 

agricultural applications unless high-performance 

computing is used (Kuznetsov et al., 2012). B) Quasi-3D 

integrated models, which offer a pragmatic and 

computationally efficient alternative. This approach 

tightly couples an array of 1D vadose zone models 

(simulating vertical processes) with a 2D groundwater 

model (simulating lateral saturated flow and water table 

dynamics) (Arnold et al., 1993; Saxton et al., 1974; 

Šimůnek et al., 2006b; Therrien et al., 2009; van Dam et 

al., 1997). In such modelling setup, the field is 

represented by a collection of parallel non-interacting 

vertical columns representing different field conditions in 

terms of soil saturated hydraulic conductivity (Ks) 

groundwater level (GWL) and root zone-first layer depth 

(FLD), etc. which can be obtained from different 

methodologies (Tables 3 and 4). This architecture 

explicitly captures the critical interaction between the 

unsaturated zone and spatial variations of model 

parameters and of boundary conditions (e.g., dynamic 

groundwater table) other variables (e.g., soil hydraulic 

properties) across the field, the key drivers of field-scale 

soil moisture patterns (Rezaei et al., 2017). In such case, 

the uncertainty in model output (quasi 3D modeling 

approach) can be reduced when using the high-resolution 

information while a fast performance can be achieved. 

Ultimately, these approaches aim to optimize variable 

irrigation requirement within the field using a 2D 

modeling technique (quasi 3D). 

 Despite their advantages, the application of these 

integrated models for operational irrigation is 

complicated by parameterization challenges and 

computational demands, limiting their feasibility for end-

users like farmers. Future research must focus on 

simplifying the parameterization of quasi-3D frameworks 
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by integrating remote and proximal sensing data to make 

them a practical tool for field-scale precision water 

management. 

 

7. Future Perspectives 

Advancements in precision irrigation modeling hinge 

upon integrating continuous long-term field data with 

cutting-edge technologies such as Internet of Things 

(IoT) sensors and artificial intelligence (AI) for real-time 

monitoring and adaptive management. Future research 

should emphasize the development of hybrid modeling 

frameworks that couple crop growth dynamics with soil 

hydrology, remote sensing inputs, and machine learning 

algorithms to enhance prediction accuracy under variable 

climatic and edaphic conditions.  

 Future advancements in precision irrigation modeling 

will be increasingly driven by AI and Machine Learning 

(ML). ML algorithms can serve as powerful surrogates 

(meta-models) for computationally expensive process-

based models, enabling rapid scenario analysis and 

optimization. Furthermore, ML techniques are adept at 

extracting patterns from large, heterogeneous datasets 

generated by IoT sensors, proximal sensing, and remote 

sensing platforms. Their integration into hybrid modeling 

frameworks can enhance parameter estimation, facilitate 

data assimilation for real-time model updating, and 

improve the prediction of crop water needs under 

complex, non-linear conditions that are challenging for 

traditional models. 

 A persistent hurdle remains the scaling of models 

from the plot to the landscape and regional level. This 

transition is hampered by inherent spatial heterogeneity 

of soil and crop properties, data scarcity for regional 

parameterization, and significant computational 

demands. Addressing these challenges requires a multi-

faceted approach: (1) improved spatially explicit 

parameterization through advanced geostatistics and the 

integration of remote sensing data; (2) the development 

of probabilistic frameworks and ensemble modeling 

techniques (e.g., Bayesian averaging) to quantify and 

propagate uncertainty across scales; and (3) the creation 

of multi-scale modeling architectures that balance 

computational efficiency with physical realism. 

 Scaling these models from plot to landscape and 

regional levels remains a formidable challenge due to 

inherent soil and crop heterogeneity, data scarcity, and 

computational constraints. Addressing these issues 

requires improved spatially explicit parameterization, 

probabilistic approaches for uncertainty quantification, 

and enhanced user-friendly platforms that facilitate 

stakeholder engagement and decision support. 

 Finally, for these technological advances to realize 

their full impact, they must be translated into practical, 

accessible, and economically viable tools for end-users. 

Future research must therefore focus not only on 

algorithmic innovation but also on developing user-

friendly platforms that provide clear decision support to 

farmers and water managers. Embedding these tools 

within supportive policy frameworks and addressing key 

adoption barriers—such as initial investment costs, 

technical expertise requirements, and perceived risks—is 

crucial for bridging the gap between research and 

widespread practical implementation. Moreover, 

embedding these technological advances within 

sustainable management frameworks and agricultural 

policies is crucial to ensure practical adoption and 

maximize environmental and economic benefits. 

Interdisciplinary collaborations among agronomists, 

hydrologists, data scientists, and policymakers will be 

pivotal to drive innovations that foster resilient and 

resource-efficient irrigation systems. Ultimately, these 

efforts will contribute to climate-smart agriculture by 

enabling adaptive irrigation strategies tailored to site-

specific conditions, thereby enhancing food security and 

conserving water resources globally. 

 

8. Conclusion 

Precision irrigation is essential for improving water use 

efficiency and ensuring sustainable agriculture amid 

climate variability and resource constraints. This review 

highlights the critical role of integrated modeling 

approaches—combining crop growth models, soil 

hydrological simulations, and inverse parameter 

estimation—in enabling data-driven, site-specific 

irrigation management, promoting resilient and resource-

efficient agriculture under changing climatic conditions. 

These models simulate the complex soil–plant–

atmosphere interactions, optimizing irrigation timing and 

amounts to reduce water loss and enhance crop yield.  

While models such as WOFOST, CERES, AquaCrop, 

HYDRUS, SWAP, and SWAT have advanced our 

understanding of crop and soil water dynamics, 

challenges remain in scaling up, incorporating spatial 

variability, and addressing data scarcity. Ultimately, 

integrating advanced modeling with real-time monitoring 

and decision-support systems will be pivotal in 

transforming irrigation practices. However, for this 

transformation to be successful, these systems must be 

designed to be not only scientifically robust but 

also user-friendly, cost-effective, and accessible to 

farmers. Interdisciplinary collaborations that include 

agronomists, hydrologists, data scientists, economists, 

and policymakers are essential to develop economically 

and environmentally sustainable variable rate irrigation 

strategies that are adopted on the ground, thereby 

promoting resilient and resource-efficient agriculture 

under changing climatic conditions. 
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