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ABSTRACT

Accurate estimation of saturated hydraulic conductivity (Ks) is essential for soil and water management, yet the reliability of the
pedotransfer functions (PTFs) is often overlooked.Tthis study compares the predictive performance and the robustness of field
estimates of Ks obtained by three types of PTFs: Multiple Regression (MR), Artificial Neural Networks (ANN) and the Group Method
of Data Handling (GMDH) developed using 134 soil samples collected in north-western Iran, which is a region with semi-arid
conditions and mixed agricultural uses whereas the dataset encompasses a wide range of structural and textural variationsto Ks
prediction. In addition to traditional soil properties soil moisture deficit compared to the optimum value at the time of sampling, 6,
was used as a proxy indicator of soil structural condition. Model precision was evaluated using Root Mean Square Error (RMSE) and
the Nash—Sutcliffe efficiency; reliability was determined through repeated data splitting. Even though ANN provided good accuracy
for the training set, its performance for the validation set was inconsistence. MR produced consistent, albeit limited performances
over both the training and validation subsets. Conversely, GMDH appears to strike a good compromise between prediction accuracy,
reliability, parsimony of the predictor set, and texture versus structure variables. The results point to the importance of including
structural measures such as 64 in PTF development and provide a basis for considering model repeatability a long with accuracy. In
general, the results indicate that GMDH is a robust and feasible technique to develop accurate PTFs for K predictions with limited
amount of data.

Keywords: Pedo-transfer function, soil function modeling, Water retention curve, Artificial neural networks, multiple regression.

Doussan and Ruy, 2009; Kosugi, 1996; Mualem, 1976;
Neyshabouri et al., 2013, 2015; Van Genuchten, 1980).
The direct measurements of K; in the laboratory or in the
field (e.g., according to Klute and Dirksen, 1986;
Reynolds and Elrick, 1985; Reynolds et al., 2002) is
usually costly, time consuming, and tedious (Alvarez-
Acosta et al., 2012; Christiaens and Feyen, 2001; Islam et
al., 2006; Jabro, 1992; Montzka et al., 2017; Schaap and
Leij, 1998; Tietje and Hennings, 1996) and subject to large
uncertainty due to associated small scale soil
heterogeneity and experimental errors (Aimrun and Amin,
2009; Alvarez-Acosta et al., 2012; Schaap and Leij, 1998).
In fact, several studies showed that the relative accuracy
(expressed as a percentage) of different methods varies

1. Introduction

Characterization of soil hydraulic properties is required to
describe the water, energy, and carbon exchange processes
between the land surface and the atmosphere (Montzka et
al., 2017) and to assess soil and ground water
contamination risk or soil remediation activities
(Neyshaboury et al., 2015). The soil water retention curve,
WRC, the hydraulic conductivity curve, HCC, and soil
water diffusivity, D(0), are the most important and
fundamental hydraulic properties of soil (Montzka et al.,
2017; Rahmati and Neyshaboury, 2016). Vereecken et al.
(2016) pointed out that the relative magnitude of soil water
fluxes is collectively controlled by WRC, HCC and D(6).

Saturated hydraulic conductivity (Kj) is one of the soil
hydraulic properties usually required as input in
simulation models (Alvarez-Acosta et al., 2012; Herbst et
al., 2006) to derive the HCC. K is the maximum flow rate
of water under saturated condition (Mallants et al., 1997b)
which is used to assess the risk of leaching of solutes, to
characterize water infiltration, and to model surface runoff
(Masis-Meléndez et al., 2014). Further, it is widely used
as a scaling factor to describe the unsaturated hydraulic
conductivity (Brooks and Corey, 1966; Campbell, 1974;
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among different soil types (Gupta et al., 1993; Mallants et
al., 1997a; Mohanty et al., 1994; Paige and Hillel, 1993).
On the other hand, the global application of land surface
models requires knowledge of K; while global
measurements of K; are not feasible, and data are not
available to provide global coverage (Vereecken et al.,
2016). Therefore, soil scientists, hydrologists, or
environmentalists usually attempt to estimate K using the
easiest and fastest approaches where pedo-transfer
functions (PTFs) are among the most applied methods
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(Pachepsky and Rawls, 1999). PTFs allow translating soil
information that is available to information that is needed
or required in e.g., simulation models (Bouma, 1989).
Researchers usually apply PFTs to fill the gap between
commonly available soil properties and those soil
characteristics, which are required as inputs to various
types of models (McBratney et al., 2002). Most of the
PTFs related to the estimation of the K are based on the
following exponential form (Brakensiek et al., 1984;
Campbell and Shiozawa, 1992; Cosby et al., 1984; Dane
and Puckett, 1994; Julia et al., 2004; Puckett et al., 1985;
Saxton et al., 1986; Vereecken et al., 1990; Wosten, 1997;
Wosten et al., 1999):

K = constant x exp (f(x)) [1]

where, several soil properties serve as explanatory
variable f{x) such as clay, silt, and sand content, organic
carbon (OC) or organic matter (OM) content, bulk density,
and porosity or saturated water content (Brakensiek et al.,
1984; Campbell and Shiozawa, 1992; Cosby et al., 1984;
Dane and Puckett, 1994; Puckett et al., 1985; Saxton et al.,
1986; Vereecken et al., 1990; Wosten, 1997; Wosten et al.,
1999). Additionally, several other linear or nonlinear
regression based PTFs have been also developed for K;
prediction, e.g., by Jabro (1992), Suleiman and Ritchie
(2001), Julia et al. (2004), and Spychalski et al. (2007).
Artificial neural network (ANN) is also widely applied to
derive PTFs to predict K,. Several researchers, e.g.,
Minasny et al. (2004), Merdun et al. (2006), Parasuraman
et al. (2006), Agyare et al. (2007), Ghanbarian-Alavijeh et
al. (2010), Arshad et al. (2013), Albalasmeh et al. (2022),
Yamag et al. (2022), Mozaffari et al. (2024), Moosavi et
al. (2024), Naderianfar (2025), Mozaffari et al. (2025),
and Elbisy (2025), used ANN to develop PTFs for Kj
prediction. Schaap et al. (1998), Arshad et al. (2010), and
Sarmadian and Taghizadeh-Mehrjardi (2014) reported
that ANN produced more accurate PTFs to predict soil
properties than regression techniques. On the other hand,
other studies confirm higher efficiency for regression-
based PTFs compared to ANN-based ones. For example,
Zhao et al. (2016) reported that although ANN and MR
showed similar accuracy in terms of K, prediction, the
MR-based PTF showed higher reliability compared to the
ANN-based PTFs.

The numerous classical PTFs established over the past
few decades can in general be divided into two groups:
empirical and physically based approaches. Empirical
PTFs (from simple linear and nonlinear regressions to
more flexible machine-learning approaches) aim for
statistical relationships between easily measured soil
properties, and hydraulic parameters like K. They are
powerful due to their simplicity and low data need
although they tend to heavily rely on the
representativeness of calibration data and the lack of
extrapolation in unknown scenarios remains questioning.
In contrast, physically based or semi-empirical PTFs try to

integrate mechanistic knowledge on soil water flow, by
means of a functional relation between K, and pore size
distribution, soil structure or water retention parameters.
Although they are mathematically attractive, these models
rely on structural or hydraulic parameters that are seldom
measured at regional or larger scales. Consequently,
despite their drawbacks, many practical applications are
still based on empirical PTFs. This dichotomy brings to
focus one of the central challenges posed by these two
types of models: empirical PTFs might provide good
accuracy but often show no interpretable relationship with
soil processes, while mechanistic/similarity-based
approaches deliver physical insight but require that we
have data which are prohibitively costly to collect. Hence,
there is a requirement for approaches that can achieve the
compromise between predictive performance and the
selection of those with the highest impact on soil
properties, where GMDH could have an advantage over
traditional empirical models.

Aside from applied procedure, the number of applied
input variables is also deterministic in PTFs application.
For example, the higher accuracy of the predictions by
ANN will be accessible by including as many as number
of predictors. While the higher the number of predictors,
the higher the cost for data collecting. Therefore,
regarding the practical point of view, it is important to
identify the most effective predictors for final PTF
development. Literature review reveals that soil clay, silt,
and sand content beside its organic carbon content, bulk
density, and dryness and wetness condition are among the
most applied properties for PTFs development
(Brakensiek et al., 1984; Campbell and Shiozawa, 1992;
Cosby et al., 1984; Dane and Puckett, 1994; Puckett et al.,
1985; Saxton et al., 1986; Vereecken et al., 1990; Wosten,
1997; Wésten et al., 1999). However, the accuracy of these
empirical PTFs outside the database used for their
development is unknown (Vereecken et al.,, 2016).
Therefore, there seems to be no guaranty if these
communally used properties will serve as proper
indicators for K, prediction in all conditions. On the other
hand, it is always argued that a good estimate of K cannot
be obtained without including structural information (Or
et al., 2021; Vereecken et al., 2022; Sharghi et al., 2025).
However, Logsdon et al. (2013) pointed out that there is
only an extremely limited quantitative understanding of
soil structure and dynamics and how they affect various
functions of soil. So far, several indicators including soil
aggregate stability, aggregates mean diameter, pore size
distribution, and fractal geometry (Grossman et al., 2002)
have been introduced to quantify soil structure. However,
the variability of the soil structure is a crucial factor which
is missed in our investigations. More importantly, when
soil is sampled for water movement characterization, it is
urgent to take as many representative samples as possible
with the minimum change in soil structure. It is strongly
suggested to obtain undisturbed soil samples at/or near
field capacity (Grossman et al., 2002) to avoid soil
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shattering or compaction during sampling to prevent soil
structure damages. However, in most cases, especially in
arid or semi-arid regions, the desirable soil water content
for soil sampling is not present and soil is usually sampled
beyond its optimum water content. Therefore, it is
necessary to provide a proper indicator to quantify the
uncertainties in K; measurement which may be relevant to
the variability of the soil structure due to soil sampling in
non-optimal conditions. Therefore, we further introduce
applying soil moisture deficit from its optimum value for
sampling (6,) as an indicator of soil structural variability.
Soil moisture deviation from its optimum value is
expected to affect the stability of soil structure and may
thus also affect K. Therefore, soil water content deviation
from its optimum value may reflect its effect on Kj
measurement.

As stated above, the accuracy of the developed PTFs
does indeed depend on the choice of the procedure
(Weihermiiller et al., 2021). Developing more dependable
PTFs, determining the most effective input variables, and
identifying soil groups that could improve PTFs accuracy
are as important as their accuracies. Nevertheless, a review
of literature reveals that most K, -related PTFs were
developed without a reliability test (at least up to our
knowledge). On the other hand, although stepwise
regression can be applied to identify the set of the most
effective predictors, regression based PTFs usually expose
a lower accuracy compared to ANN predictions (Arshad
et al., 2010; Sarmadian and Taghizadeh-Mehrjardi, 2014;
Schaap et al., 1998). However, ANN does not provide an
explicit procedure to select the most essential (statistically
relevant) PTFs input variables (Pachepsky et al., 1996). In
contrast to ANN, the group method of data handling
(GMDH), which finds an approximate relationship
between a set of input and output variables (Farlow, 1984;
Pachepsky et al., 1998), enables the identification of
essential input variables (Rahmati, 2017). In fact, the
GMDH retains only essential input variables in a flexible
net of regression equations due to a built-in algorithm
(Pachepsky and Rawls, 1999). Hecht-Nielsen (1990)
showed that GMDH is more appropriate than statistical
regression to link the substantial number of variables in a
complicated relationship between input and output
variables. Yet, no comparison has been made between
GMDH and two other commonly used procedures (ANN
and MR) to evaluate their performance in terms of a
reliable and accurate estimation of Kj.

Despite many efforts to derive PTFs for the prediction
of Kj, there are still two major gaps. First, most research
uses MR or ANN even though these methods do not have
an explicit device for choosing predictive predictors
(ANN) and lose robustness when many predictors are used
in the calculations (MR). Therefore, the comparative
evaluation of the performance of GMDH—a method
whose structure has been developed precisely for
identifying the most influential input parameters—has not
yet been systematically reported in K prediction. Second,

67

A data-driven approach to predict soil hydraulic...

while soil structure is generally recognized as essential for
estimating K, the structural variability at sampling (e.g.,
by deviations from optimal moisture) is seldom formally
quantified or included in the development of PTF.
Thereby, the observed PTFs do not tell us much about how
soil structural attributes affect model predictive accuracy
and reliability. To bridge these gaps, we need to compare
GMDH with ANN and MR under the framework that
explicitly includes soil texture and structure variables.
Therefore, the objectives of this study were: 1) evaluate
the prediction accuracy and reliability of GMDH, ANN
and MR for K; 2) employ GMDH to select the most
important input variables; 3) determine whether soil
moisture deficit at sampling (6;) helps for better Kj
estimation; and 4) compare the resulting PTFs to the more
frequently used exponential model (Eq. 1).

2. Methods and Materials
2.1. Soil Sampling and Field/Laboratory Measurements

Disturbed and undisturbed soil samples from 0- 15 cm
depths were collected at 134 distinct locations in the
North-western Iran, located between latitudes 37°43°07”
N to 37°50°08” N and longitudes 46°22°23” E to
46°28°05” E. According to Rahmati et al (2020), the
watershed is characterized by an area of about 7,854
hectares, spreading across various elevations ranging from
around 3,534m at the high lands to around 2,190 m at the
outlet point of the watershed (Figure 1), with annual
average precipitation rate amounting to 320 mm. Bare-
lands (46%) and poor pastures (42%) are the dominant
land uses of the study area, which is only 12% farming that
included both rainfed and irrigated fields (Figure 1)
(Rahmati et al., 2015).

Disturbed soil samples were analyzed for clay (cc), silt
(si), and sand (sa) contents using the hydrometer method
(Gee and Or, 2002), organic carbon (OC) using wet
oxidation technique (Nelson and Sommers, 1982),
aggregate stability (WAS) using wet-sieving method
(Nimmo and Perkins, 2002), particle density (D,) by
pycnometry (Flint and Flint, 2002), and electrical
conductivity (EC) in paste saturation extracts by EC-
meter. We used undisturbed core samples to determine
saturated hydraulic conductivity (Ky) by the falling head
method (Reynolds et al., 2002), and bulk density (D)
according to the method proposed by Grossman and
Reinsch (2002). Corresponding soil water content at
sampling time () and field saturated water content ()
were measured using a gravimetric method. Since
measured field capacity (FC) was not available, we used
the equation proposed by Saxton et al. (1986) as a best
guess for FC and thus to derive the soil moisture deficit
from its optimum value (6,) at sampling time (84=0.9xFC-
0;). We do recognize, however, that the use of Saxton’s
equation includes a model-dependent approximation for
FC and hence 6, has added uncertainty based on this PTFs
estimate rather than having been directly observed.
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Figure 1. DEM (left) and land use (right) maps of the studied area (Lighvan Watershed), in northwest of Iran (Rahmati et al., 2020)

Table 1. Statistical parameters of measured characteristics in the current study

Parameters Maximum Minimum Mean CV (%)

Clay (-) 0.352 0.067 0.169 31.95
Texture Silt (-) 0.480 0.070 0.271 26.70

Sand (-) 0.795 0.342 0.560 17.21

Aggregate stability (%) 95.92 25.14 65.39 28.63
Saturated hydraulic conductivity (cm/h) 18.39 1.032 6.370 60.66
Bulk density (g/cm?) 1.486 1.207 1.345 3.81

Particle density (g/cm?) 2.646 2212 2.481 4.29
Organic carbon (%) 2.048 0.098 0.867 48.92
Electrical conductivity (mS/cm) 1.200 0.300 0.702 36.57
Antecedent water content (cm3/cm?) 0.140 0.102 0.124 5.90
Field saturated water content (cm?/cm?) 0.575 0.416 0.505 7.09

CV: Coefficient of variation

The sampled soils cover four textural classes including
sandy loam, sandy clay loam, loam, and clay loam (Figure
2). Table 1 summarizes the statistical measures of soil
properties where K had the highest variation with a
coefficient of variation of 61 % ranging from 1.032 to
18.30 cm/h. Bulk and particle densities with a coefficient
of variation of about 4 % showed the lowest variation.

2.2. PTFs development
2.2.1. Multiple regression

A simple linear multiple regression (MR) was applied to

predict K from the other measured soil characteristics:

Ks=a+b X +bXo+...+biX;

(2]
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Figure 2. Distribution of investigated soils among different soil texture classes

where, a is the intercept, b; to b; are regression
coefficients, and X; to X; implies the soil characteristics.

2.2.2. Artificial neural networks

Feedforward artificial neural network (ANN) was applied
to develop a non-linear PTF for the estimation of K.
Naming input and output variables and normalizing the
data between 0 and 1 is the first step in developing ANN
models. In the second step, we figured out the best ANN
architecture by applying a trial-and-error method to find
the optimal number of hidden neurons through training of
various architectures. Once the best ANN architecture is
trained, we applied it to independent data to confirm it. For
the ANN network, the best architecture consists of ten
neurons in the input layer, twenty-four neurons in the
hidden layer (found by user-defined GridSearchCV
method), and one neuron in output layer with trainscg and
purelin threshold functions for hidden and output layers,
respectively. The trainscg is a network training function
that updates weight and bias values according to the scaled
conjugate gradient method (Meller, 1993). While purelin
is a linear transfer function to calculate a layer's output
from its net input.

It is worth noting that we intentionally retained a
simple ANN architecture to fall in line with most common
PTF applications: The goal of our work was the
comparison between methods and not perform extensive
tuning or regularization of a single model.
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2.2.3. Group method of data handling

We applied group method of data handling (GMDH)
(Pachepsky and Rawls, 1999) to predict K using the
measured soil characteristics as input variables. The
following quadratic regression was used to obtain the
preliminary estimates (z;) for the first layer of the GMDH
network:

Zij = Cq +C1Xj +CoX; +c3xi2 +c4xJ2 +Cs5XiX; [3]

where x; and x; are pairwise selections of input variables
and ¢y to ¢s are the polynomial coefficients. The total
number (n) of polynomials is decided by following
equation:

Lo Nx(N-D)
2

where N is the number of input variables. To develop the
GMDH network, first, all polynomials were found using
pairwise selected variables (x; and x;). Then, the least
effective new variables were screened out using the
following criterion (Farlow, 1984):

e=p*RMSE jowesit(1-p)XRMSEnighest [5]

where e is the indicator used to select new variables and p
is the selection pressure implying a number between 0 and
1. Higher numbers show higher pressure in the new
variable selection. The RMSEpwess and RMSEhighes
respectively are the lowest and highest root-mean-square-
errors between target and preliminary estimates. We set
the p values equal to 0.75 applying a try and error method

[4]
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to optimize the network. The preliminary estimates with a
root mean square error (RMSE) lower than e were selected
for the next layer. The polynomials then were further
improved by repeating steps 1 and 2 and using new
selected variables (zj7s) from the earlier step till the
smallest value of the selection criterion obtained from the
current iteration shows no improvement in relation to the
smallest value obtained from the previous iteration
(Pachepsky and Rawls, 1999). The version of the GMDH
algorithm used in this study is coded in Matlab.

2.2.4. Data preparation and division into train and test
subsets

To develop and validate the PTFs, we randomly split the
data into two datasets, one training dataset and an
independent validation subset making up 30% of total
data. Prior to any modeling, we normalized both original
input and output variables to have zero mean and unit
variance and employed the normalized variables in the
PTFs development using the following equation:

_ Xi — mln(Xl)
' max(X;)—min(X;)

[6]

where, X; and Z; represent measured and normalized data,
respectively.

2.3. Statistical Analysis

The terms accuracy and reliability are two measures that
will be used in this work to assess the quality of the
different methods. The term accuracy technically means
the degree to which the result of a measurement,
calculation, or specification conforms to the correct value
or a standard (Webster, 2006). While the term reliability
technically means the degree to which the result of a
measurement, calculation, or specification can be
depended on to be exact (Webster, 2006). More simply,
we consider the term accuracy as a measure which
evaluates the results to be close to reality and term
reliability as a measure which evaluates the results to be
repeatable.

2.3.1. PTFs accuracy assessment

We evaluated the PTF accuracy by applying the root mean
square error (RMSE) and the Nash-Sutcliffe coefficient
(E) (Nash and Sutcliffe, 1970):

_ 2
RMSE=\/Z(LOng LogXp) 7]

n

_ 2
by T =Xp) “
Z(Xm _Xm)2

where X, and X, are measured and predicted K,

respectively. The )_(m is the mean value of measured K.

A value of RMSE close to zero shows a high accuracy of
the method. The E varies between —o and 1, where the
later shows perfect match. The £ < 0 shows that the model
performs worse than simply using the mean of the
observed values.

2.3.2. PTFs reliability assessment

In order to evaluate the reliability, or repeatability, of the
models, the random splitting of data into train and
independent subsets was repeated 10 times and RMSE and
E values were calculated for each replication, and average
RMSE and E values, along with their variances, were
derived from the replications for both train and
independent subsets (Pachepsky and Rawls, 1999). Then,
the following function was applied to compute the
reliability of each method:

Reliability(%)=100-CV(%) [9]

where, CV is the coefficient of variation of RMSE or £
among the ten replicates. A reliability value of one
hundred means that the applied method resulted in the
same accuracy among various replicates while the
reliability values lower than one hundred means that the
accuracy of the applied methodology is variable.

It should be noted that the repeated random split
approach used in this paper is a special case of cross-
validation known as repeated random sub-sampling or
Monte Carlo cross-validation. It has been proposed and
suggested for analysis of PTFs with small number of
observations where the main concern is to evaluate
prediction accuracies as well as stability of the model
(Pachepsky and Rawls, 1999). Ten repetitions of the train—
test partition yield a stable estimate of model variance and
obviates the need for further regularization strategies that
are usually necessary only when overfitting cannot be
assessed by means of replicates. So that the CV among
replicates is a direct measure of how reliable (repeatable)
each modelling technique is.

2.3.3. Statistical
methodologies

comparisons among different

To conduct a statistical comparison among the methods, a
¢t test using pooled estimates of the mean square error
(MSE,;) was conducted (Sirkin, 2006):

o)

JMSEp(wJ
n; l’lj

where X implies the criterion applied to measure PTF
accuracy, i and j are pairwise selections of the applied
methods, and »; and n, are the number of observations
used for the PTF development of each selected method.

t=

[10]
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Table 2. The summary of statistical analysis of train and test
subsets for ten replications of MR methodology for Ks

prediction
Train Train
Variable

E RMSE E RMSE

Mean 0.710 0.118 0.654 0.124
Min 0.674 0.111 0.365  0.113
Max 0.729 0.121 0.754  0.148

CV (%) 2.36 2.67 17.04 9.11
Reliability (%)  97.64 97.33 82.96  90.89

CV: Coefficient of variation

The parameter MSE, was calculated according to:
(Ili — 1)MSE1 + (1’1J - I)MSEJ

MSE
P (n; —=1)+(n;-1)

[11]

where n implies the number of observations and MSE is
the mean square error between measured and predicted
values of K and subscripts i and j show the two methods
compared.

3. Results and Discussion
3.1. PTF accuracy and reliability
3.1.1. MR procedure

Table 2 reports the summary of statistical analysis of train
and test subsets for MR for K prediction. In our analysis
we also included linear interactions in terms of soil
properties and K.

PTFs derived from the training set showed a high
accuracy with a mean F and RMSE of 0.71, and 0.118,
respectively (Table 2). Application of the PTFs on the
validation dataset resulted in a mean E and RMSE of 0.65,
and 0.124, respectively. Reliability was also given as
shown by values of 98 and 97 % for train dataset and 83
to 91 % for the validation datasets.

Since PTFs development was repeated ten times, only
the last one is reported here. Therefore, the following PTF
was developed to predict K, at 10" replication showing E
and RMSE of 0.70 and 0.121, respectively, for the train
subsets and £ and RMSE of 0.75 and 0.113 for the
validation subset.

K=7.18-4.20cc-5.465i-6.0552-0.2 1Dy +0.100C-
0.19D,-0.2707:-0.580,+0.0 1 EC+0.04 WAS [12]

where, all input and output variables represent normalized
values where D, and D,, are bulk and particle densities in
g/em?, Oy is field saturated water content in volumetric
percent, 6, is soil moisture deficit from its optimum value
for sampling in volumetric percent, WAS, cc, si, sa, and
OC are wet-aggregate stability, clay, silt, sand, and
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Table 3. The summary of statistical analysis of train and test
subsets for ten replications of ANN methodology for Ks

prediction
Train Train

Variable
E RMSE E RMSE
Mean 0.790 0.097 0.371 0.162
Min 0.465 0.058 -0.464  0.113
Max 0.939 0.163 0.682 0.230
CV (%) 16.86 30.28 98.71 18.46
Reliability (%)  85.14 69.72 1.29 81.54

CV: Coefficient of variation

organic carbon contents in percent and EC is electrical
conductivity in dS/m. Figure 3 shows a scatter plot of
measured and predicted K, using Eq. 12 on the complete
dataset.

3.1.2. ANN procedure

A feedforward ANN model was applied to predict K. Like
MR modeling, all variables were normalized to achieve an
effective training of the network (Luk et al., 2000).
However, the effect of normalization diminishes as
network and sample size become larger (Luk et al., 2000).

A three-layered feed forward architecture with one
input layer, one hidden layer, and one output layer was
developed to predict K;. Table 3 reports the statistical
analysis of ten replications between measured and ANN—
simulated values of K| for the train and validation subsets.
The mean £ and RMSE between measured and predicted
K for the train data set were 0.79 and 0.097 showing high
accuracy. However, applying the validation dataset as an
independent data to check the model’s accuracy depicted
low accuracy showing a mean £ and RMSE of 0.37 and
0.162. The ANN showed low reliability values of 70 to 85
% for the train dataset and 1 to 82 % for the validation
datasets. Although, the CV for £ and RMSE was
comparably low for the train subset (< 30%), a high CV
up to 100 % for the validation subset showed low
reliability. Figure 4 shows scatter plots of measured and
predicted K using the ANN network applied to the train
dataset and the validation dataset.

It is worth noting that the large gap between E values
for training (0.79) and testing (0.37) revealed overfitting
of the ANN model. This is not surprising due to the limited
size of the data, and the ability of ANN structures that can
fit in a fine manner to training examples but generalize
badly when sample size is small. While methods including
early stopping, regularization, dropout or data
augmentation can reduce overfitting, optimizing the ANN
architecture is outside of the scope of the current work that
focuses on model class comparisons under similar
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dashed.
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Figure 4. Scattering measured (Target) and predicted (Output) values of normalized Ks applying ANN network to the train dataset
and the validation in 10 replicate.

conditions rather than optimization for individual models.
The observed overfitting additionally illustrates the
difficulty of using ANN-based PTFs for moderate-sized
datasets and indicates the relatively consistent
performance exhibited by GMDH.

3.1.3. GMDH procedure

To develop GMDH network, all data sets were also
normalized to vary between 0 and 1. In order to prevent
the network being too complicated to interpret and in order
to check the different networks with different number of

layers and neurons, we repeated the network development
applying different numbers of layers (2, 3, and 5) and
neurons (5, 10, and 15). Then a comparison was carried
out to select the best network. The network based on a
lower number of layers and neurons and with better
accuracy and reliability was preferred. Table 4 reports the
summary of the statistical analysis of the different GMDH
network architectures. Results revealed that increasing the
number of the GMDH network not only showed not much
difference in network accuracy but also resulted in a low
accuracy in some cases (Table 4). Therefore, the network
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Table 4. The summary of statistical analysis of different GMDH network architectures for K prediction

A data-driven approach to predict soil hydraulic...

GMDH network architecture

Train subset

Test subset

E RMSE E RMSE
Two layers and five neurons 0.627 0.133 0.699 0.124
Two layers and ten neurons 0.626 0.136 0.612 0.132
Two layers and fifteen neurons 0.649 0.130 0.591 0.140
Three layers and five neurons 0.633 0.136 0.594 0.130
Three layers and ten neurons 0.654 0.129 0.690 0.121
Three layers and fifteen neurons 0.695 0.120 0.693 0.122
Five layers and five neurons 0.638 0.134 0.646 0.124
Five layers and ten neurons 0.673 0.128 0.644 0.123
Five layers and fifteen neurons 0.631 0.132 0.572 0.135

Table 5. The summary of statistical analysis of train and test subsets for ten replications of GMDH methodology (2 layers and five

neurons) for Ks prediction

Train Train
Variable

E RMSE E RMSE

Mean 0.627 0.133 0.699 0.124
Min 0.558 0.118 0.619 0.099
Max 0.695 0.147 0.795 0.137

CV (%) 7.51 6.37 7.69 9.52
Reliability (%) 92.49 93.63 90.48 94.24

CV: Coefficient of variation

with two layers and five neurons was selected for further
assessment. The statistical analysis for the ten replications
between measured and selected GMDH —estimated values
of K; for the train and validation subsets are reported in
Table 5. The mean £ and RMSE between measured and
predicted K for the train dataset were 0.63 and 0.133,
respectively showing high accuracy. According to the
validation dataset, the results also showed that the model
accuracy was comparable to the train dataset showing a
mean £ and RMSE of 0.70 and 0.124, respectively. The
results also revealed reliability values higher than 90% for
both the train and the validation subsets.

Equation 13 stands for the network developed to
predict K in the 10 replication showing an E and RMSE
of 0.66 and 0.129 for the train subset and 0.80 and 0.099
for the validation subset, respectively.

K= -0.14+0.862,+0.652,+0.527,2
+0.542,%-1.3021 2> [13]

where, z; and z are preliminary estimates of K; which
were calculated using following equations:

71=0.91-1.21Dy-1.6304+0.21 Dy

73

+1.57042+1.52Dyx0q [14]
7,=0.18+0.04cc+0.3107-0.38cc?
+0.2607,2-0.47cc X0y [15]

where, Dj is bulk density in g/cm?, 6, is soil moisture
deficit from its best value at sampling time in volumetric
percent, cc is clay in percent, and 65 is field saturated
moisture content in volumetric percent. We need to note
that like the MR-based PTF, all input variables need to be
normalized prior to use and output is normalized, as well.
Figure 5 shows scatter plots of measured and predicted K
using the finally selected GMDH network (Eq. 13) applied
to the full dataset in 10'" replication.

3.2. PTFs comparison

A statistical comparison of the applied methodologies
using a ¢ test is reported in Table 6. Pairwise comparison
of the three applied methodologies revealed that ANN
resulted in higher accuracy in training stage where £ (0.79
vs. 0.71 and 0.63) criterion was significantly higher (P <
0.01) than those of MR and GMDH (Table 6). On the other
hand, MR resulted in higher accuracy compared to GMDH
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Figure 5. Scattering measured (Target) and predicted (Output) values of normalized Ks applying GMDH network and train and test
data set in 10™ replicate.

Table 6. The statistical comparisons of the applied methods using t test.

Subset Variable n Ei-Ex MSEi- MSE» MSEp tRZ ty
Train MR - ANN 94 0.71-0.79 0.014 - 0.009 0.012 5.78" 5.08"
MR - GMDH 94 0.71 - 0.63 0.014-0.018 0.016 431" 453"
ANN - GMDH 94 0.79 - 0.63 0.009 - 0.018 0.014 10.01* 9.60™
Test MR - ANN 40 0.65 -0.37 0.015 - 0.026 0.021 4.15™ 8.77"
MR - GMDH 40 0.65 -0.70 0.015-0.015 0.015 0.43ms 1.62"
ANN - GMDH 40 0.37-0.70 0.026 - 0.015 0.021 453" 10.17™

ns: insignificant and **: significant with P < 0.01

in training stage as the £ of 0.71 for the MR method were
significantly higher (P < 0.01) than that of GMDH
procedure (£ = 0.63). In contrast to the results on the train
dataset, the results for the independent validation dataset
revealed that GMDH resulted in better conformity
between measured and predicted K where the £ (0.70 vs.
0.65 and 0.37) was higher than MR (insignificantly) and
ANN (significantly with P < 0.01) (Table 6). In addition
to the better performance for validation dataset, the
GMDH approach showed more reliability than the PTFs
developed by MR and ANN. The CV of the FE criterion of
7.7% was low for the GMDH showing more reliability,
while the respective CV for MR and ANN were seventeen
up to 100% (Figure 6).

The comparison between MR and ANN shows that
although ANN provided higher accuracy for the train
dataset, MR predicted Ky more accurately than ANN for
the independent validation dataset. MR also resulted in
more reliable PTF estimations than ANN showing a CV
of 2 to 17% (for both train and validation datasets),
whereas the respective CV varied between 14 to 99 % for
the ANN approach. Regarding the accuracy term in train

dataset, our results are in line with the results from Arshad
et al. (2010); Arshad et al. (2013); Schaap et al. (1998),
and Sarmadian and Taghizadeh-Mehrjardi (2014)
reporting a higher accuracy for ANN compared to MR.
However, our results revealed that the ANN fails in
independent evaluation dataset compared to MR. Even in
the case of higher accuracy for ANN in independent
evaluation dataset, we showed here that the accuracy
evaluation alone maybe is not sufficient to judge between
several PTFs and reliability test joint with accuracy
evaluation may present better measure in this regard.

In addition to producing more accurate and reliable
PTFs, GMDH algorithm can help to determine the most
important/effective input variables, which is another
advantage of GMDH (Pachepsky and Rawls, 1999). We
do believe that this may also be applicable through
stepwise regression procedure. However, the reliability of
PTFs is less for MR compared to GMDH. The GMDH
approach comprised only four input variables including
cc, Dp, 04, and 05 and produced more accurate and
dependable PTFs, while the MR and ANN approaches
included all ten input variables and resulted in lower or
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Figure 6. A summary of Nash-Sutcliffe (E) criterion along with its variation over ten replicates for three applied methods

equal accuracy and reliability levels. We believe that the
lower number of predictors in developed PTFs can
decrease the cost (in terms of the money, time, and labor
work) for their further applications.

Regarding the included soil properties as predictors in
PTF from GMDH procedure, it seems that the information
from soil textural (cc), compactness (D), and porosity
(05) as well as soil structure (6;) had been taken part to
characterize K,. The first three are well-documented by
several researchers up to now (Brakensiek et al., 1984;
Campbell and Shiozawa, 1992; Cosby et al., 1984; Dane
and Puckett, 1994; Puckett et al., 1985; Saxton et al., 1986;
Vereecken et al., 1990; Wosten, 1997; Wosten et al.,
1999). The last one, soil moisture deficit from its optimum
value for sampling (6,), is the one that we are introducing
as an alternative and proxy indicator for soil structure. The
idea came from the fact that soil sampling for water
movement characterization should be conducted without
or at least with the minimum changes in soil structure
since it is a key factor in pore size distribution and water
movement. In this regard, soil sampling at field capacity
or near field capacity is strongly advised (Grossman et al.,
2002) to prevent damage to soil structure. However as
stated before, in most cases especially in arid or semiarid
regions, the desirable soil water content for soil sampling
is not present and soil is usually sampled beyond its
optimum water content. Therefore, we further introduce 6,
as an alternative and proxy indicator of soil structural. In
this regard, we believe that 6, selection by GMDH, as a
powerful indicators identification tool (Pachepsky and
Rawls, 1999) in soil functions modeling, supports our idea
in introducing 6, as an indicator for soil structure.

3.3. GMDH vs. well-known exponential form of K-
related PTFs

At the last step, we also calibrated Eq. 1 (K = a><eb)
based on the dataset presented within this study using
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three different sets of input variables. The first set included
all available variables, while the second set included the
most applied input variables from literature (Brakensiek et
al., 1984; Campbell and Shiozawa, 1992; Cosby et al.,
1984; Dane and Puckett, 1994; Puckett et al., 1985; Saxton
etal., 1986; Vereecken et al., 1990; Wosten, 1997; Wosten
et al., 1999) containing Dy, cc, si, sa, and OC. The third
set contained the most effective input variables selected by
GMDH algorithm including cc, 64, Dy and D,, and 6.
Equation 1 was selected because all the previous studies
are based on the exponential form to estimate K.

Analogous to other PTFs, we first calibrated Eq. 1
using the train data and then applied the PTF to the
validation dataset. We also repeated the random division
of full dataset into a train and a validation dataset ten
times, where the calibration and validation of Eq. 1 was
subsequently conducted for each replicate. The results
(Table 7) revealed that applying the mostly used input
variables (cc, si, sa, Dp, and OC) resulted in the lowest
accuracy (£ lower than zero) for both the train and the
validation datasets. While applying either all available
input variables or the most effective input variables
detected by GMDH algorithm (cc, 84, Dy and D,,, and 6x)
showed higher accuracies for both the train dataset (£
higher than 0.7) and the validation dataset (£ higher than
0.6). Table 7 also shows that the GMDH algorithm
effectively determined the best input variables for K
prediction. Because using these identified variables
resulted in similar or higher accuracy to that of using all
available input variables, with £ 0.73 vs. 0.69 for the train
dataset and E of 0.65 vs. 0.61 for the validation dataset.

On the other hand, comparing the results for Eq. 1 and
the PTFs developed by the GMDH approach revealed that
the PTF developed with the GMDH showed better
accuracy (£ = 0.70) for the validation dataset compared to
Eq. 1 using all available input variables (£ =0.61) or using
the most effective input variables identified by GMDH (£
=0.65).
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Table 7. The efficiency analysis of Eq. 1 using three different input variables.

Subset Input variable type n E RMSE Reliability (%)
All variables 94 0.694 0.121 86.84
Train Mostly applied 94 -0.224 0.226 51.33
GMDH identified 94 0.730 0.115 96.79
All variables 40 0.610 0.135 83.87
Test Mostly applied 40 -0.504 0.245 64.24
GMDH identified 40 0.653 0.127 89.77

4. Conclusion

The study intended to provide a performance analysis of

three different methods including multiple regression

(MR), artificial neural network (ANN), and group method

of data handling (GMDH) to produce several pedo-

transfer functions (PTFs) to predict soil saturated
hydraulic conductivity (K). The following conclusions are
drawn from our work:

e Accuracy: Based on the Nash-Sutcliffe criterion we
conclude that the GMDH resulted in more accurate
predictions of K than MR and ANN.

e Reliability: Based on the coefficient of variation we
conclude that GMDH also resulted in more reliable
predictions of K, than applying the MR or the ANN
approaches.

e The comparison between MR and ANN showed that
MR resulted in more accurate and more reliable Kj
predictions than ANN.

e GMDH efficiently reduced the number of input
variables since this subset of variables resulted in the
same accuracy detected for the calibrated PTF based
on an exponential form using all input variables.

One important aspect to be mentioned here is that although
the ANN and ML models’ architectures were developed
with 10 input variables, the GMDH algorithm worked also
on full input set. Contrary to ANN and ML, GMDH makes
internal variable selection and then automatically includes
in models only the predictors, which significantly affects
model quality. Thus, all models started by working on the
same input space; however, GMDH had a natural
dimension reduction within its modelling process. This
decreases the natural property of GMDH and is not caused
by different data supplied to the models. The lower
predictive performance by the ANN model with full set of
predictors also demonstrates the superiority of GMDH in
this study.

From practical implications point of view, the ability
of GMDH to provide high level of accuracy and reliability
in a few numbers of inputs makes it interesting for
operational use for soil hydraulic characterization. The
GMDH-based PTFs are, therefore, more cost-effective
and time-saving options for the users, because information
on clay content, bulk density, 84, and 0y, is always available

or can be obtained at relatively low cost. The decrease in
number of predictor indices can be translated directly into
less time-consuming sampling and analysis, something
that is useful for large soil surveys or monitoring
programs. However, to acknowledge the transferability
and limitations, it should be considered that the dataset
utilized for this study includes soil from northwestern Iran
with four textural classes (sandy loam, sandy clay loam,
loam and clay loam,) and a variety of physical conditions
characteristic of semi-arid agricultural landscapes. The
apparent ability of the developed PTFs to produce good
estimates suggests robustness in this respect for GMDH,
but caution should be exercised relative to their
transferability elsewhere (on sand, clays, or organic soils
not considered by the dataset and /or under different
climatic regimes and management histories). Additional
testing and perhaps recalibration would be required before
application of these PTFs to other soil environments
outside the range we have for our dataset.

Overall, this work shows that GMDH provides a potent
and parsimonious modeling strategy of K prediction, with
performance efficiency as well as methodological
robustness across the empirical approaches and more
intricate machine-learning architectures.

Despite its good performance in this study, GMDH
also has some limitations that need to be mentioned. The
statistical approach may be sensitive to data size and not
sufficiently capture complex nonlinear interactions given
the sample sizes. Its self-organizing structure selection
might also produce another model structure if used at a
different region or combined with larger soil datasets,
although it has the advantage of variable parsimony. The
conclusions about the GMDH performance must be taken
in relation to this particular sampling size and the soil
conditions here considered.
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