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ABSTRACT 

Accurate estimation of saturated hydraulic conductivity (Ks) is essential for soil and water management, yet the reliability of the 

pedotransfer functions (PTFs) is often overlooked.Tthis study compares the predictive performance and the robustness of field 

estimates of Ks obtained by three types of PTFs: Multiple Regression (MR), Artificial Neural Networks (ANN) and the Group Method 

of Data Handling (GMDH) developed using 134 soil samples collected in north-western Iran, which is a region with semi-arid 

conditions and mixed agricultural uses whereas the dataset encompasses a wide range of structural and textural variationsto Ks 

prediction. In addition to traditional soil properties soil moisture deficit compared to the optimum value at the time of sampling, θd, 

was used as a proxy indicator of soil structural condition. Model precision was evaluated using Root Mean Square Error (RMSE) and 

the Nash–Sutcliffe efficiency; reliability was determined through repeated data splitting. Even though ANN provided good accuracy 

for the training set, its performance for the validation set was inconsistence. MR produced consistent, albeit limited performances 

over both the training and validation subsets. Conversely, GMDH appears to strike a good compromise between prediction accuracy, 

reliability, parsimony of the predictor set, and texture versus structure variables. The results point to the importance of including 

structural measures such as θd in PTF development and provide a basis for considering model repeatability a long with accuracy. In 

general, the results indicate that GMDH is a robust and feasible technique to develop accurate PTFs for Ks predictions with limited 

amount of data. 
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1. Introduction 

Characterization of soil hydraulic properties is required to 

describe the water, energy, and carbon exchange processes 

between the land surface and the atmosphere (Montzka et 

al., 2017) and to assess soil and ground water 

contamination risk or soil remediation activities 

(Neyshaboury et al., 2015). The soil water retention curve, 

WRC, the hydraulic conductivity curve, HCC, and soil 

water diffusivity, D(θ), are the most important and 

fundamental hydraulic properties of soil (Montzka et al., 

2017; Rahmati and Neyshaboury, 2016). Vereecken et al. 

(2016) pointed out that the relative magnitude of soil water 

fluxes is collectively controlled by WRC, HCC and D(θ).  

 Saturated hydraulic conductivity (Ks) is one of the soil 

hydraulic properties usually required as input in 

simulation models (Alvarez-Acosta et al., 2012; Herbst et 

al., 2006) to derive the HCC. Ks is the maximum flow rate 

of water under saturated condition (Mallants et al., 1997b) 

which is used to assess the risk of leaching of solutes, to 

characterize water infiltration, and to model surface runoff 

(Masís-Meléndez et al., 2014). Further, it is widely used 

as a scaling factor to describe the unsaturated hydraulic 

conductivity (Brooks and Corey, 1966; Campbell, 1974; 

Doussan and Ruy, 2009; Kosugi, 1996; Mualem, 1976; 

Neyshabouri et al., 2013, 2015; Van Genuchten, 1980). 

The direct measurements of Ks in the laboratory or in the 

field (e.g., according to Klute and Dirksen, 1986; 

Reynolds and Elrick, 1985; Reynolds et al., 2002) is 

usually costly, time consuming, and tedious (Alvarez-

Acosta et al., 2012; Christiaens and Feyen, 2001; Islam et 

al., 2006; Jabro, 1992; Montzka et al., 2017; Schaap and 

Leij, 1998; Tietje and Hennings, 1996) and subject to large 

uncertainty due to associated small scale soil 

heterogeneity and experimental errors (Aimrun and Amin, 

2009; Alvarez-Acosta et al., 2012; Schaap and Leij, 1998). 

In fact, several studies showed that the relative accuracy 

(expressed as a percentage) of different methods varies 

among different soil types (Gupta et al., 1993; Mallants et 

al., 1997a; Mohanty et al., 1994; Paige and Hillel, 1993). 

On the other hand, the global application of land surface 

models requires knowledge of Ks while global 

measurements of Ks are not feasible, and data are not 

available to provide global coverage (Vereecken et al., 

2016). Therefore, soil scientists, hydrologists, or 

environmentalists usually attempt to estimate Ks using the 

easiest and fastest approaches where pedo-transfer 

functions (PTFs) are among the most applied methods 
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(Pachepsky and Rawls, 1999). PTFs allow translating soil 

information that is available to information that is needed 

or required in e.g., simulation models (Bouma, 1989). 

Researchers usually apply PFTs to fill the gap between 

commonly available soil properties and those soil 

characteristics, which are required as inputs to various 

types of models (McBratney et al., 2002). Most of the 

PTFs related to the estimation of the Ks are based on the 

following exponential form (Brakensiek et al., 1984; 

Campbell and Shiozawa, 1992; Cosby et al., 1984; Dane 

and Puckett, 1994; Julia et al., 2004; Puckett et al., 1985; 

Saxton et al., 1986; Vereecken et al., 1990; Wösten, 1997; 

Wösten et al., 1999): 

( )sK constant exp f (x)=                                               [1] 

where, several soil properties serve as explanatory 

variable f(x) such as clay, silt, and sand content, organic 

carbon (OC) or organic matter (OM) content, bulk density, 

and porosity or saturated water content (Brakensiek et al., 

1984; Campbell and Shiozawa, 1992; Cosby et al., 1984; 

Dane and Puckett, 1994; Puckett et al., 1985; Saxton et al., 

1986; Vereecken et al., 1990; Wösten, 1997; Wösten et al., 

1999). Additionally, several other linear or nonlinear 

regression based PTFs have been also developed for Ks 

prediction, e.g., by Jabro (1992), Suleiman and Ritchie 

(2001), Julia et al. (2004), and Spychalski et al. (2007). 

Artificial neural network (ANN) is also widely applied to 

derive PTFs to predict Ks. Several researchers, e.g., 

Minasny et al. (2004), Merdun et al. (2006), Parasuraman 

et al. (2006), Agyare et al. (2007), Ghanbarian-Alavijeh et 

al. (2010), Arshad et al. (2013), Albalasmeh et al. (2022), 

Yamaç et al. (2022), Mozaffari et al. (2024), Moosavi et 

al. (2024),  Naderianfar (2025), Mozaffari et al. (2025), 

and Elbisy (2025), used ANN to develop PTFs for Ks 

prediction. Schaap et al. (1998), Arshad et al. (2010), and 

Sarmadian and Taghizadeh-Mehrjardi (2014) reported 

that ANN produced more accurate PTFs to predict soil 

properties than regression techniques. On the other hand, 

other studies confirm higher efficiency for regression-

based PTFs compared to ANN-based ones. For example, 

Zhao et al. (2016) reported that although ANN and MR 

showed similar accuracy in terms of Ks prediction, the 

MR-based PTF showed higher reliability compared to the 

ANN-based PTFs.  

 The numerous classical PTFs established over the past 

few decades can in general be divided into two groups: 

empirical and physically based approaches. Empirical 

PTFs (from simple linear and nonlinear regressions to 

more flexible machine-learning approaches) aim for 

statistical relationships between easily measured soil 

properties, and hydraulic parameters like Ks. They are 

powerful due to their simplicity and low data need 

although they tend to heavily rely on the 

representativeness of calibration data and the lack of 

extrapolation in unknown scenarios remains questioning. 

In contrast, physically based or semi-empirical PTFs try to 

integrate mechanistic knowledge on soil water flow, by 

means of a functional relation between Ks and pore size 

distribution, soil structure or water retention parameters. 

Although they are mathematically attractive, these models 

rely on structural or hydraulic parameters that are seldom 

measured at regional or larger scales. Consequently, 

despite their drawbacks, many practical applications are 

still based on empirical PTFs. This dichotomy brings to 

focus one of the central challenges posed by these two 

types of models: empirical PTFs might provide good 

accuracy but often show no interpretable relationship with 

soil processes, while mechanistic/similarity-based 

approaches deliver physical insight but require that we 

have data which are prohibitively costly to collect. Hence, 

there is a requirement for approaches that can achieve the 

compromise between predictive performance and the 

selection of those with the highest impact on soil 

properties, where GMDH could have an advantage over 

traditional empirical models. 

 Aside from applied procedure, the number of applied 

input variables is also deterministic in PTFs application. 

For example, the higher accuracy of the predictions by 

ANN will be accessible by including as many as number 

of predictors. While the higher the number of predictors, 

the higher the cost for data collecting. Therefore, 

regarding the practical point of view, it is important to 

identify the most effective predictors for final PTF 

development. Literature review reveals that soil clay, silt, 

and sand content beside its organic carbon content, bulk 

density, and dryness and wetness condition are among the 

most applied properties for PTFs development 

(Brakensiek et al., 1984; Campbell and Shiozawa, 1992; 

Cosby et al., 1984; Dane and Puckett, 1994; Puckett et al., 

1985; Saxton et al., 1986; Vereecken et al., 1990; Wösten, 

1997; Wösten et al., 1999). However, the accuracy of these 

empirical PTFs outside the database used for their 

development is unknown (Vereecken et al., 2016). 

Therefore, there seems to be no guaranty if these 

communally used properties will serve as proper 

indicators for Ks prediction in all conditions. On the other 

hand, it is always argued that a good estimate of Ks cannot 

be obtained without including structural information (Or 

et al., 2021; Vereecken et al., 2022; Sharghi et al., 2025). 

However, Logsdon et al. (2013) pointed out that there is 

only an extremely limited quantitative understanding of 

soil structure and dynamics and how they affect various 

functions of soil. So far, several indicators including soil 

aggregate stability, aggregates mean diameter, pore size 

distribution, and fractal geometry (Grossman et al., 2002) 

have been introduced to quantify soil structure. However, 

the variability of the soil structure is a crucial factor which 

is missed in our investigations. More importantly, when 

soil is sampled for water movement characterization, it is 

urgent to take as many representative samples as possible 

with the minimum change in soil structure. It is strongly 

suggested to obtain undisturbed soil samples at/or near 

field capacity (Grossman et al., 2002) to avoid soil 
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shattering or compaction during sampling to prevent soil 

structure damages. However, in most cases, especially in 

arid or semi-arid regions, the desirable soil water content 

for soil sampling is not present and soil is usually sampled 

beyond its optimum water content. Therefore, it is 

necessary to provide a proper indicator to quantify the 

uncertainties in Ks measurement which may be relevant to 

the variability of the soil structure due to soil sampling in 

non-optimal conditions. Therefore, we further introduce 

applying soil moisture deficit from its optimum value for 

sampling (θd) as an indicator of soil structural variability. 

Soil moisture deviation from its optimum value is 

expected to affect the stability of soil structure and may 

thus also affect Ks. Therefore, soil water content deviation 

from its optimum value may reflect its effect on Ks 

measurement. 

 As stated above, the accuracy of the developed PTFs 

does indeed depend on the choice of the procedure 

(Weihermüller et al., 2021). Developing more dependable 

PTFs, determining the most effective input variables, and 

identifying soil groups that could improve PTFs accuracy 

are as important as their accuracies. Nevertheless, a review 

of literature reveals that most Ks-related PTFs were 

developed without a reliability test (at least up to our 

knowledge). On the other hand, although stepwise 

regression can be applied to identify the set of the most 

effective predictors, regression based PTFs usually expose 

a lower accuracy compared to ANN predictions (Arshad 

et al., 2010; Sarmadian and Taghizadeh-Mehrjardi, 2014; 

Schaap et al., 1998). However, ANN does not provide an 

explicit procedure to select the most essential (statistically 

relevant) PTFs input variables (Pachepsky et al., 1996). In 

contrast to ANN, the group method of data handling 

(GMDH), which finds an approximate relationship 

between a set of input and output variables (Farlow, 1984; 

Pachepsky et al., 1998), enables the identification of 

essential input variables (Rahmati, 2017). In fact, the 

GMDH retains only essential input variables in a flexible 

net of regression equations due to a built-in algorithm 

(Pachepsky and Rawls, 1999). Hecht-Nielsen (1990) 

showed that GMDH is more appropriate than statistical 

regression to link the substantial number of variables in a 

complicated relationship between input and output 

variables. Yet, no comparison has been made between 

GMDH and two other commonly used procedures (ANN 

and MR) to evaluate their performance in terms of a 

reliable and accurate estimation of Ks.  

 Despite many efforts to derive PTFs for the prediction 

of Ks, there are still two major gaps. First, most research 

uses MR or ANN even though these methods do not have 

an explicit device for choosing predictive predictors 

(ANN) and lose robustness when many predictors are used 

in the calculations (MR). Therefore, the comparative 

evaluation of the performance of GMDH—a method 

whose structure has been developed precisely for 

identifying the most influential input parameters—has not 

yet been systematically reported in Ks prediction. Second, 

while soil structure is generally recognized as essential for 

estimating Ks, the structural variability at sampling (e.g., 

by deviations from optimal moisture) is seldom formally 

quantified or included in the development of PTF. 

Thereby, the observed PTFs do not tell us much about how 

soil structural attributes affect model predictive accuracy 

and reliability. To bridge these gaps, we need to compare 

GMDH with ANN and MR under the framework that 

explicitly includes soil texture and structure variables. 

Therefore, the objectives of this study were: 1) evaluate 

the prediction accuracy and reliability of GMDH, ANN 

and MR for Ks; 2) employ GMDH to select the most 

important input variables; 3) determine whether soil 

moisture deficit at sampling (θd) helps for better Ks 

estimation; and 4) compare the resulting PTFs to the more 

frequently used exponential model (Eq. 1). 

 

2. Methods and Materials 
2.1. Soil Sampling and Field/Laboratory Measurements 

Disturbed and undisturbed soil samples from 0- 15 cm 

depths were collected at 134 distinct locations in the 

North-western Iran, located between latitudes 37°43´07” 

N to 37°50´08” N and longitudes 46°22´23” E to 

46°28´05” E. According to Rahmati et al (2020), the 

watershed is characterized by an area of about 7,854 

hectares, spreading across various elevations ranging from 

around 3,534m at the high lands to around 2,190 m at the 

outlet point of the watershed (Figure 1), with annual 

average precipitation rate amounting to 320 mm. Bare-

lands (46%) and poor pastures (42%) are the dominant 

land uses of the study area, which is only 12% farming that 

included both rainfed and irrigated fields (Figure 1) 

(Rahmati et al., 2015). 

 Disturbed soil samples were analyzed for clay (cc), silt 

(si), and sand (sa) contents using the hydrometer method 

(Gee and Or, 2002), organic carbon (OC) using wet 

oxidation technique (Nelson and Sommers, 1982), 

aggregate stability (WAS) using wet-sieving method 

(Nimmo and Perkins, 2002), particle density (Dp) by 

pycnometry (Flint and Flint, 2002), and electrical 

conductivity (EC) in paste saturation extracts by EC-

meter. We used undisturbed core samples to determine 

saturated hydraulic conductivity (Ks) by the falling head 

method (Reynolds et al., 2002), and bulk density (Db) 

according to the method proposed by Grossman and 

Reinsch (2002). Corresponding soil water content at 

sampling time (θi) and field saturated water content (θfs) 

were measured using a gravimetric method. Since 

measured field capacity (FC) was not available, we used 

the equation proposed by Saxton et al. (1986) as a best 

guess for FC and thus to derive the soil moisture deficit 

from its optimum value (θd) at sampling time (θd=0.9×FC-

θi). We do recognize, however, that the use of Saxton’s 

equation includes a model-dependent approximation for 

FC and hence θd has added uncertainty based on this PTFs 

estimate rather than having been directly observed. 
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Figure 1. DEM (left) and land use (right) maps of the studied area (Lighvan Watershed), in northwest of Iran (Rahmati et al., 2020) 

 

Table 1. Statistical parameters of measured characteristics in the current study 

Parameters Maximum Minimum Mean CV (%) 

Texture 

Clay (-) 0.352 0.067 0.169 31.95 

Silt (-) 0.480 0.070 0.271 26.70 

Sand (-) 0.795 0.342 0.560 17.21 

Aggregate stability (%) 95.92 25.14 65.39 28.63 

Saturated hydraulic conductivity (cm/h) 18.39 1.032 6.370 60.66 

Bulk density (g/cm3) 1.486 1.207 1.345 3.81 

Particle density (g/cm3) 2.646 2.212 2.481 4.29 

Organic carbon (%) 2.048 0.098 0.867 48.92 

Electrical conductivity (mS/cm) 1.200 0.300 0.702 36.57 

Antecedent water content (cm3/cm3) 0.140 0.102 0.124 5.90 

Field saturated water content (cm3/cm3) 0.575 0.416 0.505 7.09 

CV: Coefficient of variation 

 

The sampled soils cover four textural classes including 

sandy loam, sandy clay loam, loam, and clay loam (Figure 

2). Table 1 summarizes the statistical measures of soil 

properties where Ks had the highest variation with a 

coefficient of variation of 61 % ranging from 1.032 to 

18.30 cm/h. Bulk and particle densities with a coefficient 

of variation of about 4 % showed the lowest variation.  
 

2.2. PTFs development  

2.2.1. Multiple regression 

A simple linear multiple regression (MR) was applied to 

predict Ks from the other measured soil characteristics: 

Ks=a+b1X1+b2X2+...+biXi                                                [2] 
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Figure 2. Distribution of investigated soils among different soil texture classes 

 

where, α is the intercept, b1 to bi are regression 

coefficients, and X1 to Xi implies the soil characteristics. 

 

2.2.2. Artificial neural networks 

Feedforward artificial neural network (ANN) was applied 

to develop a non-linear PTF for the estimation of Ks. 

Naming input and output variables and normalizing the 

data between 0 and 1 is the first step in developing ANN 

models. In the second step, we figured out the best ANN 

architecture by applying a trial-and-error method to find 

the optimal number of hidden neurons through training of 

various architectures. Once the best ANN architecture is 

trained, we applied it to independent data to confirm it. For 

the ANN network, the best architecture consists of ten 

neurons in the input layer, twenty-four neurons in the 

hidden layer (found by  user-defined GridSearchCV 

method), and one neuron in output layer with trainscg and 

purelin threshold functions for hidden and output layers, 

respectively. The trainscg is a network training function 

that updates weight and bias values according to the scaled 

conjugate gradient method (Møller, 1993). While purelin 

is a linear transfer function to calculate a layer's output 

from its net input.  

 It is worth noting that we intentionally retained a 

simple ANN architecture to fall in line with most common 

PTF applications: The goal of our work was the 

comparison between methods and not perform extensive 

tuning or regularization of a single model.  

 

2.2.3. Group method of data handling 

We applied group method of data handling (GMDH) 

(Pachepsky and Rawls, 1999) to predict Ks using the 

measured soil characteristics as input variables. The 

following quadratic regression was used to obtain the 

preliminary estimates (zij) for the first layer of the GMDH 

network: 
2 2

ij 0 1 i 2 j 3 i 4 j 5 i jz c c x c x c x c x c x x= + + + + +                     [3]  

where xi and xj are pairwise selections of input variables 

and c0 to c5 are the polynomial coefficients. The total 

number (n) of polynomials is decided by following 

equation: 

N (N 1)
n

2

 −
=                                                               [4] 

where N is the number of input variables. To develop the 

GMDH network, first, all polynomials were found using 

pairwise selected variables (xi and xj). Then, the least 

effective new variables were screened out using the 

following criterion (Farlow, 1984):  

e=p×RMSElowest+(1-p)×RMSEhighest                                      [5] 

where e is the indicator used to select new variables and p 

is the selection pressure implying a number between 0 and 

1. Higher numbers show higher pressure in the new 

variable selection. The RMSElowest and RMSEhighest 

respectively are the lowest and highest root-mean-square-

errors between target and preliminary estimates. We set 

the p values equal to 0.75 applying a try and error method 



Rahmati / DLSR, Vol. 2, No. 1, 2025 

70 

to optimize the network. The preliminary estimates with a 

root mean square error (RMSE) lower than e were selected 

for the next layer. The polynomials then were further 

improved by repeating steps 1 and 2 and using new 

selected variables (zij’s) from the earlier step till the 

smallest value of the selection criterion obtained from the 

current iteration shows no improvement in relation to the 

smallest value obtained from the previous iteration 

(Pachepsky and Rawls, 1999). The version of the GMDH 

algorithm used in this study is coded in Matlab.  

 

2.2.4. Data preparation and division into train and test 

subsets 

To develop and validate the PTFs, we randomly split the 

data into two datasets, one training dataset and an 

independent validation subset making up 30% of total 

data. Prior to any modeling, we normalized both original 

input and output variables to have zero mean and unit 

variance and employed the normalized variables in the 

PTFs development using the following equation: 

i i
i

i i

X min(X )
Z

max(X ) min(X )

−
=

−
                                               [6] 

 where, Xi and Zi represent measured and normalized data, 

respectively.  

 

2.3. Statistical Analysis  

The terms accuracy and reliability are two measures that 

will be used in this work to assess the quality of the 

different methods. The term accuracy technically means 

the degree to which the result of a measurement, 

calculation, or specification conforms to the correct value 

or a standard (Webster, 2006). While the term reliability 

technically means the degree to which the result of a 

measurement, calculation, or specification can be 

depended on to be exact (Webster, 2006). More simply, 

we consider the term accuracy as a measure which 

evaluates the results to be close to reality and term 

reliability as a measure which evaluates the results to be 

repeatable.  

 

2.3.1. PTFs accuracy assessment  

We evaluated the PTF accuracy by applying the root mean 

square error (RMSE) and the Nash-Sutcliffe coefficient 

(E) (Nash and Sutcliffe, 1970): 

2
m p(LogX LogX )

RMSE
n

−
=                                    [7] 

2
m p

2
m m

(X X )
E 1

(X X )

−
= −

−
                                                  [8] 

where Xm and Xp are measured and predicted  Ks, 

respectively. The mX  is the mean value of measured Ks. 

A value of RMSE close to zero shows a high accuracy of 

the method. The E varies between –∞ and 1, where the 

later shows perfect match. The E < 0 shows that the model 

performs worse than simply using the mean of the 

observed values.  

 

2.3.2. PTFs reliability assessment  

In order to evaluate the reliability, or repeatability, of the 

models, the random splitting of data into train and 

independent subsets was repeated 10 times and RMSE and 

E values were calculated for each replication, and average 

RMSE and E values, along with their variances, were 

derived from the replications for both train and 

independent subsets (Pachepsky and Rawls, 1999). Then, 

the following function was applied to compute the 

reliability of each method: 

Reliability(%)=100-CV(%)                                            [9] 

where, CV is the coefficient of variation of RMSE or E 

among the ten replicates. A reliability value of one 

hundred means that the applied method resulted in the 

same accuracy among various replicates while the 

reliability values lower than one hundred means that the 

accuracy of the applied methodology is variable.  

 It should be noted that the repeated random split 

approach used in this paper is a special case of cross-

validation known as repeated random sub-sampling or 

Monte Carlo cross-validation. It has been proposed and 

suggested for analysis of PTFs with small number of 

observations where the main concern is to evaluate 

prediction accuracies as well as stability of the model 

(Pachepsky and Rawls, 1999). Ten repetitions of the train–

test partition yield a stable estimate of model variance and 

obviates the need for further regularization strategies that 

are usually necessary only when overfitting cannot be 

assessed by means of replicates. So that the CV among 

replicates is a direct measure of how reliable (repeatable) 

each modelling technique is. 

 

2.3.3. Statistical comparisons among different 

methodologies  

To conduct a statistical comparison among the methods, a 

t test using pooled estimates of the mean square error 

(MSEp) was conducted (Sirkin, 2006): 

i j

p
i j

x x
t

1 1
MSE

n n

−
=

 
+ 

 
 

                                                             [10] 

where X implies the criterion applied to measure PTF 

accuracy, i and j are pairwise selections of the applied 

methods, and n1 and n2 are the number of observations 

used for the PTF development of each selected method. 
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Table 2. The summary of statistical analysis of train and test 

subsets for ten replications of MR methodology for Ks 

prediction 

Variable 
Train   Train  

E RMSE  E RMSE 

Mean 0.710 0.118  0.654 0.124 

Min 0.674 0.111  0.365 0.113 

Max 0.729 0.121  0.754 0.148 

CV (%) 2.36 2.67  17.04 9.11 

Reliability (%) 97.64 97.33  82.96 90.89 

CV: Coefficient of variation 

 

The parameter MSEp was calculated according to: 

i i j j
p

i j

(n 1)MSE (n 1)MSE
MSE

(n 1) (n 1)

− + −
=

− + −
                          [11] 

where n implies the number of observations and MSE is 

the mean square error between measured and predicted 

values of Ks and subscripts i and j show the two methods 

compared. 

 

3. Results and Discussion 
3.1. PTF accuracy and reliability  

3.1.1. MR procedure 

Table 2 reports the summary of statistical analysis of train 

and test subsets for MR for Ks prediction. In our analysis 

we also included linear interactions in terms of soil 

properties and Ks. 

 PTFs derived from the training set showed a high 

accuracy with a mean E and RMSE of 0.71, and 0.118, 

respectively (Table 2). Application of the PTFs on the 

validation dataset resulted in a mean E and RMSE of 0.65, 

and 0.124, respectively. Reliability was also given as 

shown by values of 98 and 97 % for train dataset and 83 

to 91 % for the validation datasets.  

 Since PTFs development was repeated ten times, only 

the last one is reported here. Therefore, the following PTF 

was developed to predict Ks at 10th replication showing E 

and RMSE of 0.70 and 0.121, respectively, for the train 

subsets and E and RMSE of 0.75 and 0.113 for the 

validation subset.  

Ks=7.18-4.20cc-5.46si-6.05sa-0.21Db+0.10OC- 

0.19Dp-0.27θfs-0.58θd+0.01EC+0.04WAS           [12] 

where, all input and output variables represent normalized 

values where Db and Dp are bulk and particle densities in 

g/cm3, θfs is field saturated water content in volumetric 

percent, θd is soil moisture deficit from its optimum value 

for sampling in volumetric percent, WAS, cc, si, sa, and 

OC are wet-aggregate stability, clay, silt, sand, and  

 

Table 3. The summary of statistical analysis of train and test 

subsets for ten replications of ANN methodology for Ks 

prediction 

Variable 
Train   Train  

E RMSE  E RMSE 

Mean 0.790 0.097  0.371 0.162 

Min 0.465 0.058  -0.464 0.113 

Max 0.939 0.163  0.682 0.230 

CV (%) 16.86 30.28  98.71 18.46 

Reliability (%) 85.14 69.72  1.29 81.54 

CV: Coefficient of variation 

 

organic  carbon  contents  in  percent and EC is  electrical 

conductivity in dS/m. Figure 3 shows a scatter plot of 

measured and predicted Ks using Eq. 12 on the complete 

dataset. 

 

3.1.2. ANN procedure  

A feedforward ANN model was applied to predict Ks. Like 

MR modeling, all variables were normalized to achieve an 

effective training of the network (Luk et al., 2000). 

However, the effect of normalization diminishes as 

network and sample size become larger (Luk et al., 2000).  

 A three-layered feed forward architecture with one 

input layer, one hidden layer, and one output layer was 

developed to predict Ks. Table 3 reports the statistical 

analysis of ten replications between measured and ANN–

simulated values of Ks for the train and validation subsets. 

The mean E and RMSE between measured and predicted 

Ks for the train data set were 0.79 and 0.097 showing high 

accuracy. However, applying the validation dataset as an 

independent data to check the model’s accuracy depicted 

low accuracy showing a mean E and RMSE of 0.37 and 

0.162. The ANN showed low reliability values of 70 to 85 

% for the train dataset and 1 to 82 % for the validation 

datasets. Although, the CV for E and RMSE was 

comparably low for the train subset (< 30%), a high CV 

up to 100 % for the validation subset showed low 

reliability. Figure 4 shows scatter plots of measured and 

predicted Ks using the ANN network applied to the train 

dataset and the validation dataset.  

 It is worth noting that the large gap between E values 

for training (0.79) and testing (0.37) revealed overfitting 

of the ANN model. This is not surprising due to the limited 

size of the data, and the ability of ANN structures that can 

fit in a fine manner to training examples but generalize 

badly when sample size is small. While methods including 

early stopping, regularization, dropout or data 

augmentation can reduce overfitting, optimizing the ANN 

architecture is outside of the scope of the current work that 

focuses on model class comparisons under similar  
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Figure 3. Scattering measured (Target) and predicted (Output) values of normalized Ks applying Eq. 12 to the full dataset, 1:1 line is 

dashed. 

 

 

Figure 4. Scattering measured (Target) and predicted (Output) values of normalized Ks applying ANN network to the train dataset 

and the validation in 10th replicate. 

 

conditions rather than optimization for individual models. 

The observed overfitting additionally illustrates the 

difficulty of using ANN-based PTFs for moderate-sized 

datasets and indicates the relatively consistent 

performance exhibited by GMDH. 

 

3.1.3. GMDH procedure  

To develop GMDH network, all data sets were also 

normalized to vary between 0 and 1. In order to prevent 

the network being too complicated to interpret and in order 

to check the different networks with different number of 

layers and neurons, we repeated the network development 

applying different numbers of layers (2, 3, and 5) and 

neurons (5, 10, and 15). Then a comparison was carried 

out to select the best network. The network based on a 

lower number of layers and neurons and with better 

accuracy and reliability was preferred. Table 4 reports the 

summary of the statistical analysis of the different GMDH 

network architectures. Results revealed that increasing the 

number of the GMDH network not only showed not much 

difference in network accuracy but also resulted in a low 

accuracy in some cases (Table 4). Therefore, the network  
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Table 4. The summary of statistical analysis of different GMDH network architectures for Ks prediction 

GMDH network architecture 
Train subset  Test subset 

E RMSE  E RMSE 

Two layers and five neurons 0.627 0.133  0.699 0.124 

Two layers and ten neurons 0.626 0.136  0.612 0.132 

Two layers and fifteen neurons 0.649 0.130  0.591 0.140 

Three layers and five neurons 0.633 0.136  0.594 0.130 

Three layers and ten neurons 0.654 0.129  0.690 0.121 

Three layers and fifteen neurons 0.695 0.120  0.693 0.122 

Five layers and five neurons 0.638 0.134  0.646 0.124 

Five layers and ten neurons 0.673 0.128  0.644 0.123 

Five layers and fifteen neurons 0.631 0.132  0.572 0.135 

 

Table 5. The summary of statistical analysis of train and test subsets for ten replications of GMDH methodology (2 layers and five 

neurons) for Ks prediction 

Variable 
Train   Train  

E RMSE  E RMSE 

Mean 0.627 0.133  0.699 0.124 

Min 0.558 0.118  0.619 0.099 

Max 0.695 0.147  0.795 0.137 

CV (%) 7.51 6.37  7.69 9.52 

Reliability (%) 92.49 93.63  90.48 94.24 

CV: Coefficient of variation 

 

with two layers and five neurons was selected for further 

assessment. The statistical analysis for the ten replications 

between measured and selected GMDH –estimated values 

of Ks for the train and validation subsets are reported in 

Table 5. The mean E and RMSE between measured and 

predicted Ks for the train dataset were 0.63 and 0.133, 

respectively showing high accuracy. According to the 

validation dataset, the results also showed that the model 

accuracy was comparable to the train dataset showing a 

mean E and RMSE of 0.70 and 0.124, respectively. The 

results also revealed reliability values higher than 90% for 

both the train and the validation subsets.  

 Equation 13 stands for the network developed to 

predict Ks in the 10th replication showing an E and RMSE 

of 0.66 and 0.129 for the train subset and 0.80 and 0.099 

for the validation subset, respectively. 

Ks= -0.14+0.86z1+0.65z2+0.52z1
2 

+0.54z2
2-1.30z1 z2            [13] 

where, z1 and z2 are preliminary estimates of Ks which 

were calculated using following equations: 

z1=0.91-1.21Db-1.63θd+0.21Db
2 

+1.57θd
2+1.52Db×θd               [14] 

z2=0.18+0.04cc+0.31θfs-0.38cc2 

+0.26θfs
2-0.47cc×θfs                     [15] 

where, Db is bulk density in g/cm3, θd is soil moisture 

deficit from its best value at sampling time in volumetric 

percent, cc is clay in percent, and θfs is field saturated 

moisture content in volumetric percent. We need to note 

that like the MR-based PTF, all input variables need to be 

normalized prior to use and output is normalized, as well. 

Figure 5 shows scatter plots of measured and predicted Ks 

using the finally selected GMDH network (Eq. 13) applied 

to the full dataset in 10th replication. 

 

3.2. PTFs comparison 

A statistical comparison of the applied methodologies 

using a t test is reported in Table 6. Pairwise comparison 

of the three applied methodologies revealed that ANN 

resulted in higher accuracy in training stage where E (0.79 

vs. 0.71 and 0.63) criterion was significantly higher (P < 

0.01) than those of MR and GMDH (Table 6). On the other 

hand, MR resulted in higher accuracy compared to GMDH  
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Figure 5. Scattering measured (Target) and predicted (Output) values of normalized Ks applying GMDH network and train and test 

data set in 10th replicate. 

 

Table 6. The statistical comparisons of the applied methods using t test. 

Subset Variable n E1 - E2 MSE1- MSE2 MSEP 2R
t  Et  

Train MR - ANN 94 0.71 - 0.79 0.014 - 0.009 0.012 5.78** 5.08** 

 MR - GMDH 94 0.71 - 0.63 0.014 - 0.018 0.016 4.31** 4.53** 

 ANN - GMDH 94 0.79 - 0.63 0.009 - 0.018 0.014 10.01** 9.60** 
        

Test MR - ANN 40 0.65 -0.37 0.015 - 0.026 0.021 4.15** 8.77** 

 MR - GMDH 40 0.65 -0.70 0.015 - 0.015 0.015 0.43ns 1.62ns 

 ANN - GMDH 40 0.37 -0.70 0.026 - 0.015 0.021 4.53** 10.17** 

ns: insignificant and **: significant with P < 0.01 

 

in training stage as the E of 0.71 for the MR method were 

significantly higher (P < 0.01) than that of GMDH 

procedure (E = 0.63). In contrast to the results on the train 

dataset, the results for the independent validation dataset 

revealed that GMDH resulted in better conformity 

between measured and predicted Ks where the E (0.70 vs. 

0.65 and 0.37) was higher than MR (insignificantly) and 

ANN (significantly with P < 0.01) (Table 6). In addition 

to the better performance for validation dataset, the 

GMDH approach showed more reliability than the PTFs 

developed by MR and ANN. The CV of the E criterion of 

7.7% was low for the GMDH showing more reliability, 

while the respective CV for MR and ANN were seventeen 

up to 100% (Figure 6).  

 The comparison between MR and ANN shows that 

although ANN provided higher accuracy for the train 

dataset, MR predicted Ks more accurately than ANN for 

the independent validation dataset. MR also resulted in 

more reliable PTF estimations than ANN showing a CV 

of 2 to 17% (for both train and validation datasets), 

whereas the respective CV varied between 14 to 99 % for 

the ANN approach. Regarding the accuracy term in train 

dataset, our results are in line with the results from Arshad 

et al. (2010); Arshad et al. (2013); Schaap et al. (1998), 

and Sarmadian and Taghizadeh-Mehrjardi (2014) 

reporting a higher accuracy for ANN compared to MR. 

However, our results revealed that the ANN fails in 

independent evaluation dataset compared to MR. Even in 

the case of higher accuracy for ANN in independent 

evaluation dataset, we showed here that the accuracy 

evaluation alone maybe is not sufficient to judge between 

several PTFs and reliability test joint with accuracy 

evaluation may present better measure in this regard.  

 In addition to producing more accurate and reliable 

PTFs, GMDH algorithm can help to determine the most 

important/effective input variables, which is another 

advantage of GMDH (Pachepsky and Rawls, 1999). We 

do believe that this may also be applicable through 

stepwise regression procedure. However, the reliability of 

PTFs is less for MR compared to GMDH. The GMDH 

approach comprised only four input variables including 

cc, Db, θd, and θfs and produced more accurate and 

dependable PTFs, while the MR and ANN approaches 

included all ten input variables and resulted in lower or  
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Figure 6. A summary of Nash-Sutcliffe (E) criterion along with its variation over ten replicates for three applied methods 

 

equal accuracy and reliability levels. We believe that the 

lower number of predictors in developed PTFs can 

decrease the cost (in terms of the money, time, and labor 

work) for their further applications.  

 Regarding the included soil properties as predictors in 

PTF from GMDH procedure, it seems that the information 

from soil textural (cc), compactness (Db), and porosity 

(θfs) as well as soil structure (θd) had been taken part to 

characterize Ks. The first three are well-documented by 

several researchers up to now (Brakensiek et al., 1984; 

Campbell and Shiozawa, 1992; Cosby et al., 1984; Dane 

and Puckett, 1994; Puckett et al., 1985; Saxton et al., 1986; 

Vereecken et al., 1990; Wösten, 1997; Wösten et al., 

1999). The last one, soil moisture deficit from its optimum 

value for sampling (θd), is the one that we are introducing 

as an alternative and proxy indicator for soil structure. The 

idea came from the fact that soil sampling for water 

movement characterization should be conducted without 

or at least with the minimum changes in soil structure 

since it is a key factor in pore size distribution and water 

movement. In this regard, soil sampling at field capacity 

or near field capacity is strongly advised (Grossman et al., 

2002) to prevent damage to soil structure. However as 

stated before, in most cases especially in arid or semiarid 

regions, the desirable soil water content for soil sampling 

is not present and soil is usually sampled beyond its 

optimum water content. Therefore, we further introduce θd 

as an alternative and proxy indicator of soil structural. In 

this regard, we believe that θd selection by GMDH, as a 

powerful indicators identification tool (Pachepsky and 

Rawls, 1999) in soil functions modeling, supports our idea 

in introducing θd as an indicator for soil structure. 

 

3.3. GMDH vs. well-known exponential form of Ks-

related PTFs  

At the last step, we also calibrated Eq. 1 (
b

sK a e=  ) 

based on the dataset presented within this study using 

three different sets of input variables. The first set included 

all available variables, while the second set included the 

most applied input variables from literature (Brakensiek et 

al., 1984; Campbell and Shiozawa, 1992; Cosby et al., 

1984; Dane and Puckett, 1994; Puckett et al., 1985; Saxton 

et al., 1986; Vereecken et al., 1990; Wösten, 1997; Wösten 

et al., 1999) containing Db, cc, si, sa, and OC. The third 

set contained the most effective input variables selected by 

GMDH algorithm including cc, θd, Db and Dp, and θfs. 

Equation 1 was selected because all the previous studies 

are based on the exponential form to estimate Ks.  

 Analogous to other PTFs, we first calibrated Eq. 1 

using the train data and then applied the PTF to the 

validation dataset. We also repeated the random division 

of full dataset into a train and a validation dataset ten 

times, where the calibration and validation of Eq. 1 was 

subsequently conducted for each replicate. The results 

(Table 7) revealed that applying the mostly used input 

variables (cc, si, sa, Db, and OC) resulted in the lowest 

accuracy (E lower than zero) for both the train and the 

validation datasets. While applying either all available 

input variables or the most effective input variables 

detected by GMDH algorithm (cc, θd, Db and Dp, and θfs) 

showed higher accuracies for both the train dataset (E 

higher than 0.7) and the validation dataset (E higher than 

0.6). Table 7 also shows that the GMDH algorithm 

effectively determined the best input variables for Ks 

prediction. Because using these identified variables 

resulted in similar or higher accuracy to that of using all 

available input variables, with E 0.73 vs. 0.69 for the train 

dataset and E of 0.65 vs. 0.61 for the validation dataset.  

 On the other hand, comparing the results for Eq. 1 and 

the PTFs developed by the GMDH approach revealed that 

the PTF developed with the GMDH showed better 

accuracy (E = 0.70) for the validation dataset compared to 

Eq. 1 using all available input variables (E = 0.61) or using 

the most effective input variables identified by GMDH (E 

= 0.65). 
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Table 7. The efficiency analysis of Eq. 1 using three different input variables. 

Subset Input variable type n E RMSE Reliability (%) 

Train 

All variables 94 0.694 0.121 86.84 

Mostly applied 94 -0.224 0.226 51.33 

GMDH identified 94 0.730 0.115 96.79 

Test 

All variables 40 0.610 0.135 83.87 

Mostly applied 40 -0.504 0.245 64.24 

GMDH identified 40 0.653 0.127 89.77 

4. Conclusion 

The study intended to provide a performance analysis of 

three different methods including multiple regression 

(MR), artificial neural network (ANN), and group method 

of data handling (GMDH) to produce several pedo-

transfer functions (PTFs) to predict soil saturated 

hydraulic conductivity (Ks). The following conclusions are 

drawn from our work: 

• Accuracy: Based on the Nash-Sutcliffe criterion we 

conclude that the GMDH resulted in more accurate 

predictions of Ks than MR and ANN. 

• Reliability: Based on the coefficient of variation we 

conclude that GMDH also resulted in more reliable 

predictions of Ks than applying the MR or the ANN 

approaches.  

• The comparison between MR and ANN showed that 

MR resulted in more accurate and more reliable Ks 

predictions than ANN. 

• GMDH efficiently reduced the number of input 

variables since this subset of variables resulted in the 

same accuracy detected for the calibrated PTF based 

on an exponential form using all input variables.  
 

One important aspect to be mentioned here is that although 

the ANN and ML models’ architectures were developed 

with 10 input variables, the GMDH algorithm worked also 

on full input set. Contrary to ANN and ML, GMDH makes 

internal variable selection and then automatically includes 

in models only the predictors, which significantly affects 

model quality. Thus, all models started by working on the 

same input space; however, GMDH had a natural 

dimension reduction within its modelling process. This 

decreases the natural property of GMDH and is not caused 

by different data supplied to the models. The lower 

predictive performance by the ANN model with full set of 

predictors also demonstrates the superiority of GMDH in 

this study. 

 From practical implications point of view, the ability 

of GMDH to provide high level of accuracy and reliability 

in a few numbers of inputs makes it interesting for 

operational use for soil hydraulic characterization. The 

GMDH-based PTFs are, therefore, more cost-effective 

and time-saving options for the users, because information 

on clay content, bulk density, θd, and θfs is always available 

or can be obtained at relatively low cost. The decrease in 

number of predictor indices can be translated directly into 

less time-consuming sampling and analysis, something 

that is useful for large soil surveys or monitoring 

programs. However, to acknowledge the transferability 

and limitations, it should be considered that the dataset 

utilized for this study includes soil from northwestern Iran 

with four textural classes (sandy loam, sandy clay loam, 

loam and clay loam,) and a variety of physical conditions 

characteristic of semi-arid agricultural landscapes. The 

apparent ability of the developed PTFs to produce good 

estimates suggests robustness in this respect for GMDH, 

but caution should be exercised relative to their 

transferability elsewhere (on sand, clays, or organic soils 

not considered by the dataset and /or under different 

climatic regimes and management histories). Additional 

testing and perhaps recalibration would be required before 

application of these PTFs to other soil environments 

outside the range we have for our dataset. 

 Overall, this work shows that GMDH provides a potent 

and parsimonious modeling strategy of Ks prediction, with 

performance efficiency as well as methodological 

robustness across the empirical approaches and more 

intricate machine-learning architectures. 

 Despite its good performance in this study, GMDH 

also has some limitations that need to be mentioned. The 

statistical approach may be sensitive to data size and not 

sufficiently capture complex nonlinear interactions given 

the sample sizes. Its self-organizing structure selection 

might also produce another model structure if used at a 

different region or combined with larger soil datasets, 

although it has the advantage of variable parsimony. The 

conclusions about the GMDH performance must be taken 

in relation to this particular sampling size and the soil 

conditions here considered. 

 

Funding sources 

This research did not receive any specific grant from 

funding agencies in the public, commercial, or non-profit 

sectors. 

 

References 

Agyare, W.A., Park, S., Vlek, P., 2007. Artificial neural 



A data-driven approach to predict soil hydraulic… 

77 

network estimation of saturated hydraulic 

conductivity. Vadose Zone Journal 6(2), 423-431. 

Aimrun, W., Amin, M., 2009. Pedo-transfer function for 

saturated hydraulic conductivity of lowland paddy 

soils. Paddy and Water Environment 7(3), 217-225. 

Albalasmeh, A., Mohawesh, O., Gharaibeh, M., Deb, S., 

Slaughter, L., & El Hanandeh, A. (2022). Artificial 

neural network optimization to predict saturated 

hydraulic conductivity in arid and semi-arid regions. 

Catena, 217, 106459. 

Alvarez-Acosta, C., Lascano, R.J., Stroosnijder, L., 2012. 

Test of the Rosetta pedotransfer function for saturated 

hydraulic conductivity. Open Journal of Soil Science 

2(03), 203. 

Arshad, R., Sayad, G., Mazlum, M., Jafarnejadi, A., 

Mohammadi Safarzadeh, V., 2010. Pedo-transfer 

functions application to estimate the infiltration rate of 

the soil using neural network and linear regression 

methods. Journal of Crop Improvement 2(5), 55-62. 

Arshad, R.R., Sayyad, G., Mosaddeghi, M., Gharabaghi, 

B., 2013. Predicting saturated hydraulic conductivity 

by artificial intelligence and regression models. ISRN 

Soil Science 2013. 

Bouma, J., 1989. Using soil survey data for quantitative 

land evaluation, Advances in soil science. Springer, 

pp. 177-213. 

Brakensiek, D., Rawls, W., Stephenson, G., 1984. 

Modifying SCS hydrologic soil groups and curve 

numbers for rangeland soils. American Society of 

Agricultural Engineers. 

Brooks, R.H., Corey, A.T., 1966. Properties of porous 

media affecting fluid flow. Journal of the Irrigation and 

Drainage Division 92(2), 61-90. 

Campbell, G., Shiozawa, S., 1992. Prediction of hydraulic 

properties of soils using particle-size distribution and 

bulk density data. Indirect methods for estimating the 

hydraulic properties of unsaturated soils. University of 

California, Riverside, 317-328. 

Campbell, G.S., 1974. A simple method for determining 

unsaturated conductivity from moisture retention data. 

Soil science 117(6), 311-314. 

Christiaens, K., Feyen, J., 2001. Analysis of uncertainties 

associated with different methods to determine soil 

hydraulic properties and their propagation in the 

distributed hydrological MIKE SHE model. Journal of 

Hydrology 246(1), 63-81. 

Cosby, B., Hornberger, G., Clapp, R., Ginn, T., 1984. A 

statistical exploration of the relationships of soil 

moisture characteristics to the physical properties of 

soils. Water resources research 20(6), 682-690. 

Dane, J., Puckett, W., 1994. Field soil hydraulic properties 

based on physical and mineralogical information, 

Proceedings of the international workshop on indirect 

methods for estimating the hydraulic properties of 

unsaturated soils. University of California, Riverside, 

pp. 389-403. 

Doussan, C., Ruy, S., 2009. Prediction of unsaturated soil 

hydraulic conductivity with electrical conductivity. 

Water Resources Research 45(10). 

Elbisy, M. S. (2025). Predictive Modeling of Saturated 

Hydraulic Conductivity using Machine Learning 

Techniques. Engineering, Technology & Applied 

Science Research, 15(2), 21348-21355. 

Farlow, S.J., 1984. Self-organizing methods in modeling: 

GMDH type algorithms, 54. CrC Press. 

Flint, A.L., Flint, L.E., 2002. 2.2 Particle Density. 

Methods of Soil Analysis: Part 4 Physical Methods 

(methodsofsoilan4), 229-240. 

Gee, G.W., Or, D., 2002. 2.4 Particle-size analysis. 

Methods of soil analysis. Part 4, 255-293. 

Ghanbarian-Alavijeh, B., Liaghat, A., Sohrabi, S., 2010. 

Estimating saturated hydraulic conductivity from soil 

physical properties using neural networks model. 

World Acad. Sci. Eng. Technol 4, 108-113. 

Grossman, R., Reinsch, T., 2002. 2.1 Bulk density and 

linear extensibility. Methods of Soil Analysis: Part 4 

Physical Methods (methodsofsoilan4), 201-228. 

Grossman, R., Reinsch, T., Dane, J., Topp, G., 2002. 

Methods of soil analysis. Part 4. Physical methods. 

Methods of soil analysis: Parth 4. Physical methods. 

Gupta, R., Rudra, R., Dickinson, W., Patni, N., Wall, G., 

1993. Comparison of saturated hydraulic conductivity 

measured by various field methods. Transactions of 

the ASAE 36(1), 51-55. 

Hecht-Nielsen, R., 1990. Solution for a distributed 

hydrological model and applications. 

Neurocomputing, Addison-Wesley, Reading, MA, 89-

93. 

Herbst, M., Diekkrüger, B., Vanderborght, J., 2006. 

Numerical experiments on the sensitivity of runoff 

generation to the spatial variation of soil hydraulic 

properties. Journal of Hydrology 326(1), 43-58. 

Islam, N., Wallender, W.W., Mitchell, J.P., Wicks, S., 

Howitt, R.E., 2006. Performance evaluation of 

methods for the estimation of soil hydraulic parameters 

and their suitability in a hydrologic model. Geoderma 

134(1), 135-151. 

Jabro, J., 1992. Estimation of saturated hydraulic 

conductivity of soils from particle size distribution and 

bulk density data. Transactions of the ASAE 35(2), 

557-560. 

Julia, M.F., Monreal, T.E., del Corral Jiménez, A.S., 

Meléndez, E.G.a., 2004. Constructing a saturated 

hydraulic conductivity map of Spain using 

pedotransfer functions and spatial prediction. 

Geoderma 123(3), 257-277. 

Klute, A., Dirksen, C., 1986. Hydraulic conductivity and 

diffusivity: Laboratory methods. Methods of Soil 

Analysis: Part 1—Physical and Mineralogical 

Methods (methodsofsoilan1), 687-734. 

Kosugi, K.i., 1996. Lognormal distribution model for 

unsaturated soil hydraulic properties. Water Resources 

Research 32(9), 2697-2703. 

Logsdon, S., Berli, M., Horn, R., 2013. Quantifying and 



Rahmati / DLSR, Vol. 2, No. 1, 2025 

78 

modeling soil structure dynamics. Soil Science Society 

of America. 

Luk, K., Ball, J.E., Sharma, A., 2000. A study of optimal 

model lag and spatial inputs to artificial neural network 

for rainfall forecasting. Journal of Hydrology 227(1), 

56-65. 

Mallants, D., Jacques, D., Tseng, P.-H., van Genuchten, 

M.T., Feyen, J., 1997a. Comparison of three hydraulic 

property measurement methods. Journal of hydrology 

199(3-4), 295-318. 

Mallants, D., Mohanty, B.P., Vervoort, A., Feyen, J., 

1997b. Spatial analysis of saturated hydraulic 

conductivity in a soil with macropores. Soil 

Technology 10(2), 115-131. 

Masís-Meléndez, F., Deepagoda, T.C., de Jonge, L.W., 

Tuller, M., Moldrup, P., 2014. Gas diffusion-derived 

tortuosity governs saturated hydraulic conductivity in 

sandy soils. Journal of Hydrology 512, 388-396. 

McBratney, A.B., Minasny, B., Cattle, S.R., Vervoort, 

R.W., 2002. From pedotransfer functions to soil 

inference systems. Geoderma 109(1), 41-73. 

Merdun, H., Çınar, Ö., Meral, R., Apan, M., 2006. 

Comparison of artificial neural network and regression 

pedotransfer functions for prediction of soil water 

retention and saturated hydraulic conductivity. Soil 

and Tillage Research 90(1), 108-116. 

Minasny, B., Hopmans, J., Harter, T., Eching, S., Tuli, A., 

Denton, M., 2004. Neural networks prediction of soil 

hydraulic functions for alluvial soils using multistep 

outflow data. Soil Science Society of America Journal 

68(2), 417-429. 

Mohanty, B., Kanwar, R.S., Everts, C., 1994. Comparison 

of saturated hydraulic conductivity measurement 

methods for a glacial-till soil. Soil Science Society of 

America Journal 58(3), 672-677. 

Møller, M.F., 1993. A scaled conjugate gradient algorithm 

for fast supervised learning. Neural networks 6(4), 

525-533. 

Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., 

Vereecken, H., 2017. A global data set of soil 

hydraulic properties and sub-grid variability of soil 

water retention and hydraulic conductivity curves. 

Earth Syst. Sci. Data Discuss. 2017, 1-25. 

Moosavi, A. A., Nematollahi, M. A., & Omidifard, M. 

(2024). Comparing machine learning approaches for 

estimating soil saturated hydraulic conductivity. PloS 

one, 19(11), e0310622. 

Mozaffari, H., Moosavi, A. A., & Nematollahi, M. A. 

(2024). Predicting saturated and near-saturated 

hydraulic conductivity using artificial neural networks 

and multiple linear regression in calcareous soils. Plos 

one, 19(1), e0296933. 

Mozaffari, H., Pakjoo, M., Nematollahi, M. A., Forouzan, 

S., & Moosavi, A. A. (2025). Predicting Soil Hydraulic 

Conductivity: A Review of Artificial Neural Networks 

Applications. Artificial Intelligence Applications for a 

Sustainable Environment, 441-462. 

Mualem, Y., 1976. A new model for predicting the 

hydraulic conductivity of unsaturated porous media. 

Water resources research 12(3), 513-522. 

Naderianfar, M. (2025). Developing a simple artificial 

intelligence fuzzy-based model for estimating 

saturated hydraulic conductivity of soil. Scientific 

Reports, 15(1), 28476. 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting 

through conceptual models part I—A discussion of 

principles. Journal of hydrology 10(3), 282-290. 

Nelson, D., Sommers, L.E., 1982. Total carbon, organic 

carbon, and organic matter. Methods of soil analysis. 

Part 2. Chemical and microbiological properties 

(methodsofsoilan2), 539-579. 

Neyshabouri, M.R., Rahmati, M., Doussan, C., 

Behroozinezhad, B., 2013. Simplified estimation of 

unsaturated soil hydraulic conductivity using bulk 

electrical conductivity and particle size distribution. 

Soil research 51(1), 23-33. 

Neyshaboury, M.R., Rahmati, M., Alavi, S.A.R., Rezaee, 

H., Nazemi, A., 2015. Prediction of unsaturated soil 

hydraulic conductivity using air permeability: 

Regression approach. Indian Journal Of Agricultural 

Research 49(6). 

Nimmo, J.R., Perkins, K.S., 2002. 2.6 Aggregate Stability 

and Size Distribution. Methods of soil analysis: Part 4, 

317-328. 

Pachepsky, Y., Rawls, W., Gimenez, D., Watt, J., 1998. 

Use of soil penetration resistance and group method of 

data handling to improve soil water retention 

estimates. Soil and Tillage Research 49(1), 117-126. 

Pachepsky, Y.A., Rawls, W., 1999. Accuracy and 

reliability of pedotransfer functions as affected by 

grouping soils. Soil Science Society of America 

Journal 63(6), 1748-1757. 

Pachepsky, Y.A., Timlin, D., Varallyay, G., 1996. 

Artificial neural networks to estimate soil water 

retention from easily measurable data. Soil Science 

Society of America Journal 60(3), 727-733. 

Paige, G.B., Hillel, D., 1993. Comparison of three 

methods for assessing soil hydraulic properties. Soil 

Science 155(3), 175-189. 

Parasuraman, K., Elshorbagy, A., Si, B.C., 2006. 

Estimating saturated hydraulic conductivity in 

spatially variable fields using neural network 

ensembles. Soil Science Society of America Journal 

70(6), 1851-1859. 

Puckett, W., Dane, J., Hajek, B., 1985. Physical and 

mineralogical data to determine soil hydraulic 

properties. Soil Science Society of America Journal 

49(4), 831-836. 

Rahmati, M., Oskouei, M. M., Neyshabouri, M. R., 

Walker, J. P., Fakherifard, A., Ahmadi, A., & 

Mousavi, S. B. (2015). Soil moisture derivation using 

triangle method in the lighvan watershed, north 

western Iran. Journal of soil science and plant 

nutrition, 15(1), 167-178. 



A data-driven approach to predict soil hydraulic… 

79 

Rahmati, M., 2017. Reliable and accurate point-based 

prediction of cumulative infiltration using soil readily 

available characteristics: a comparison between 

GMDH, ANN, and MLR. Journal of Hydrology On 

Press. 

Rahmati, M., Neyshaboury, M.R., 2016. Soil Air 

Permeability Modeling and Its Use for Predicting 

Unsaturated Soil Hydraulic Conductivity. Soil Science 

Society of America Journal 80(6), 1507-1513. 

Rahmati, M., Neyshabouri, M. R., Mohammadi-Oskooei, 

M., Fakheri-Fard, A., & Ahmadi, A. (2020). 

Characterizing soil infiltration parameters using 

field/laboratory measured and remotely-sensed data. 

Environmental Resources Research, 8(2), 129-146. 

Reynolds, W., Elrick, D., 1985. In situ measurement of 

field-saturated hydraulic conductivity, sorptivity, and 

the α-parameter using the guelph permeameter. Soil 

Science 140(4), 292-302. 

Reynolds, W., Elrick, D., Youngs, E., Amoozegar, A., 

Booltink, H., Bouma, J., 2002. 3.4 Saturated and field-

saturated water flow parameters. Methods of soil 

analysis, Part 4, 797-801. 

Or, D., Keller, T., & Schlesinger, W. H. (2021). Natural 

and managed soil structure: On the fragile scaffolding 

for soil functioning. Soil and Tillage Research, 208, 

104912. 

Sarmadian, F., Taghizadeh-Mehrjardi, R., 2014. 

Estimation of infiltration rate and deep percolation 

water using feed-forward neural networks in Gorgan 

Province. Eurasian Journal of Soil Science 3(1), 1. 

Saxton, K., Rawls, W.J., Romberger, J., Papendick, R., 

1986. Estimating generalized soil-water characteristics 

from texture. Soil Science Society of America Journal 

50(4), 1031-1036. 

Schaap, M.G., Leij, F.J., 1998. Using neural networks to 

predict soil water retention and soil hydraulic 

conductivity. Soil and Tillage Research 47(1), 37-42. 

Schaap, M.G., Leij, F.J., Van Genuchten, M.T., 1998. 

Neural network analysis for hierarchical prediction of 

soil hydraulic properties. Soil Science Society of 

America Journal 62(4), 847-855. 

Sharghi, F., Bauke, S. L., Rahmati, M., Burger, D. J., 

Vereecken, H., & Amelung, W. (2025). Soil 

infiltration variability across diverse soil reference 

groups, textures, and landuse types. Geoderma, 463, 

117550. 

Sirkin, R.M., 2006. Two-sample t test. In: R.M. Sirkin 

(Ed.), Statistics for the Social Sciences Thousand 

Oaks, Calif.: Sage Publications. xxi, London, New 

Delhi, pp. 271-358. 

Spychalski, M., Kaźmierowski, C., Kaczmarek, Z., 2007. 

Estimation of saturated hydraulic conductivity on the 

basis of drainage porosity. Electronic Journal of Polish 

Agricultural Universities 10(1), 04. 

Suleiman, A., Ritchie, J., 2001. Estimating saturated 

hydraulic conductivity from soil porosity. 

Transactions of the ASAE 44(2), 235. 

Tietje, O., Hennings, V., 1996. Accuracy of the saturated 

hydraulic conductivity prediction by pedo-transfer 

functions compared to the variability within FAO 

textural classes. Geoderma 69(1-2), 71-84. 

van Genuchten, M.T., 1980. A closed-form equation for 

predicting the hydraulic conductivity of unsaturated 

soils. Soil science society of America journal 44(5), 

892-898. 

Vereecken, H., Maes, J., Feyen, J., 1990. Estimating 

unsaturated hydraulic conductivity from easily 

measured soil properties. Soil Science 149(1), 1-12. 

Vereecken, H., Schnepf, A., Hopmans, J., Javaux, M., Or, 

D., Roose, T., Vanderborght, J., Young, M., Amelung, 

W., Aitkenhead, M., 2016. Modeling soil processes: 

Review, key challenges, and new perspectives. Vadose 

zone journal 15(5). 

Vereecken, H., Amelung, W., Bauke, S. L., Bogena, H., 

Brüggemann, N., Montzka, C., ... & Zhang, Y. (2022). 

Soil hydrology in the Earth system. Nature Reviews 

Earth & Environment, 3(9), 573-587. 

Webster, M., 2006. Merriam-Webster online dictionary. 

Weihermüller, L., Lehmann, P., Herbst, M., Rahmati, M., 

Verhoef, A., Or, D., ... & Vereecken, H. (2021). 

Choice of pedotransfer functions matters when 

simulating soil water balance fluxes. Journal of 

Advances in Modeling Earth Systems, 13(3), 

e2020MS002404. 

Wösten, J., 1997. Pedotransfer functions to evaluate soil 

quality. Developments in Soil Science 25, 221-245. 

Wösten, J., Lilly, A., Nemes, A., Le Bas, C., 1999. 

Development and use of a database of hydraulic 

properties of European soils. Geoderma 90(3), 169-

185. 

Yamaç, S. S., Negiş, H., Şeker, C., Memon, A. M., 

Kurtuluş, B., Todorovic, M., & Alomair, G. (2022). 

Saturated hydraulic conductivity estimation using 

artificial intelligence techniques: a case study for 

calcareous alluvial soils in a semi-arid region. Water, 

14(23), 3875. 

Zhao, C., Shao, M.a., Jia, X., Nasir, M., Zhang, C., 2016. 

Using pedotransfer functions to estimate soil hydraulic 

conductivity in the Loess Plateau of China. Catena 

143, 1-6. 

 


