Aliasgharzad, N., Shirmohamadi, E. & Oustan, S. (2009). Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition. Soil and Environment, 28(2): 119-123.
Alvarez, A.L., Weyers, S.L. & Gardner, R.D. (2024). Cyanobacteria-Based Soil Amendments in the Soil-Plant System: Effects of Inoculations on Soil Nutrient and Microbial Dynamics under Spring Wheat Growth, Algal Research, 77, 103326.
Bahmanyar, M.A., & Soodaee Mashaee, S. (2012). Influences of nitrogen and potassium top dressing on yield and yield components as well as their accumulation in rice (Oryza sativa). African Journal of Biotechnology, 9(18): 2648-2653.
Bao, J., Zhuo, C., Zhang, D., Li, Y., Hu, F., Li, H., Su, Z., Liang, Y. & He, H. (2021). Potential Applicability of a Cyanobacterium as a Biofertilizer and Biopesticide in Rice Fields. Plant and Soil, 463, 97–112.
Bermejo, R., Talavera, E.M., DelValle, C. & Alvarez- Pez, J.M. (2002). C-phycocyanin incorporated into reverse micelles: a fluorescence study. Colloids and Surfaces B: Biointerfaces, 18: 51-59.
Boyd, E.S. & Peters, J.W. (2013). New insights into the evolutionary history of biological nitrogen fixation, Frontiers in Microbiology, 4, 201.
Chittora, D., Meena, M., Barupal, T., Swapnil, P. & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture, Biochemistry and Biophysics Reports, 22, 100737.
Gheda, S.F. & Ahmed, D.A. (2015). Improved Soil Characteristics and Wheat Germination as Influenced by Inoculation of Nostoc kihlmani and Anabaena cylindrica. Rendiconti Lincei, 26: 121–131.
Ghosh, T.K. & Saha, K.C. (1992). Effects of inoculation with N2-fixing cyanobacteria on the nitrogenase activity in soil and rhizosphere of wetland rice (Oryza sativa L.). Biololgy and Fertility Soils, 16: 16-20.
Gonçalves, A.L. (2021). The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Applied Sciences, 11, 871.
Hakkoum, Z., Minaoui, F., Chabili, A., Douma, M., Mouhri, K. & Loudiki, M. (2025). Biofertilizing Effect of Soil Cyanobacterium Anabaena cylindrica–Based Formulations on Wheat Growth, Physiology, and Soil Fertility. Agriculture, 15(2), 189. https://doi.org/10.3390/agriculture15020189.
Ito, Y. & Butler, A. (2006). Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnology and Oceanography, 50(6): 1918-1923.
John, D.M. Whitton, B.A. & Brook, A.J. (2003). The freshwater algal flora of the British Isles, an identification guide to freshwater and terrestrial algae. Cambridge University Press.
Jose, S., Renuka, N., Ratha, S.K., Kumari, S. & Bux, F. (2024). Bioprospecting of Microalgae from Agricultural Fields and Developing Consortia for Sustainable Agriculture. Algal Research, 78, 103428.
Kholssi, R., Marks, E.A.N., Miñón, J., Montero, O., Lorentz, J.F., Debdoubi, A. & Rad, C. (2022). Biofertilizing Effects of Anabaena cylindrical Biomass on the Growth and Nitrogen Uptake of Wheat. Communications in Soil Science and Plant Analysis, 53, 1216–1225.
Koller, M., Salerno, A., Tuffner, P., Koinigg, M., Bochzelt, H. & Schoberd, S. (2012). Characteristics and potential of micro algal cultivation strategies: a review J. Clean. Prod. 37: 377–388.
Li, S., Huang, W., Peng, C., Jing, X., Ding, J., Chen, T., Huang, R., Hu, H., Zhou, J., Zhang, J. & Liang, Y. (2025). Enhancement of rice production and soil carbon sequestration utilizing nitrogen-fixing cyanobacteria.
Applied Soil Ecology, 207, 105940,
https://doi.org/10.1016/j.apsoil.2025.105940.
Lis, H. Kranzler, C. Keren, N., & Shaked Y. (2015). A Comparative Study of Iron Uptake Rates and Mechanisms amongst Marine and Fresh Water Cyanobacteria: Prevalence of Reductive Iron Uptake. Life, 5:841-860.
Massey, M.S. & Davis, J.G. (2023). Beyond Soil Inoculation: Cyanobacteria as a Fertilizer Replacement. Nitrogen, 4, 253–262.
Mazhar, S., Cohen, J.D., Hasnain, S. (2013). Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. Journal of Basic Microbiology, 53, 996–1003.
Minaoui, F., Hakkoum, Z., Chabili, A., Douma, M., Mouhri, K. & Loudiki, M. (2024). Biostimulant Effect of Green Soil Microalgae Chlorella vulgaris Suspensions on Germination and Growth of Wheat (Triticum aestivum Var. Achtar) and Soil Fertility. Algal Research, 82, 103655.
Mishra, U. Choudhary, K.K. Pabbi, S. Dhar, D.W. & Singh, P.K. (2012). Influence of blue green algae and Azolla inoculation on specific soil enzymes under paddy cultivation. Asian Journal Microbiology and Biotechnology Environmental Science, 7: 9-12.
Prasanna, R., Sharma, E., Sharma, P., Kumar, A., Kumar, R., Gupta, V., Pal, R.K., Shivay, Y.S. & Nain, L. (2013). Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environmental, 11:175–183.
Purwani, J., Pratiwi, E. & Sipahutar, I., (2021). The effect of different species of cyanobacteria on the rice yield and nitrogen use efficiency under different levels of nitrogen fertilizer on alluvial West Java. IOP conference series: Earth and environmental science. IOP Publishing.
Purwani, J., Pratiwi, E., Sipahutar, I.A. & Husnain, A. (2021). The effect of different species of cyanobacteria on the rice yield and nitrogen use efficiency under different levels of nitrogen fertilizer on Alluvial West Java. 1st International Conference on Sustainable Tropical Land Management, IOP Conference Series: Earth and Environmental Science, 648: 012196.
Raimi, A., Roopnarain, A. & Adeleke, R. (2021). Biofertilizer Production in Africa: Current Status, Factors Impeding Adoption and Strategies for Success. Scientific African, 11, e00694.
Ramakrishnan, B., Maddela, N. R., Venkateswarluc, K. & Megharaj, M. (2023). Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: a critical view. Environmental Science Advances, 2: 586-612.
Rathod, S. G., Bhushan, S. & Mantri, V. A. (2023). Phytohormones and pheromones in the phycology literature: Benchmarking of data-set and developing critical tools of biotechnological implications for commercial aquaculture industry. Phycology, 4(1), 1-36.
Renganathan, P., Gaysina, L. A., Holguín-Peña, R. J., Sainz-Hernández, J. C., Ortega-García, J. & Rueda-Puente, E. O. (2024a). Phycoremediated Microalgae and Cyanobacteria Biomass as Biofertilizer for Sustainable Agriculture: A Holistic Biorefinery Approach to Promote Circular Bioeconomy. Biomass, 4(4), 1047-1077. https://doi.org/10.3390/biomass4040059
Renganathan, P., Puente, E.O.R., Sukhanova, N.V. & Gaysina, L.A. (2024b). Hydroponics with microalgae and cyanobacteria: Emerging trends and opportunities in modern agriculture. BioTech, 13, 27.
Sekar, S. & Chandramohan, M. (2008). Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology, 20:113–136.
Setiawati, M.R., Damayani, M., Herdiyantoro, D., Suryatmana, P., Anggraini, D. & Khumairah, F.H. (2018). The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant, in AIP Conference Proceedings, AIP Publishing LLC, 2018, vol. 1927, 1, p. 030017.
Shrivastava, U.P. & Kumar, A. (2011). A simple and rapid plate assay for the screening of indole-3-acetic acid (IAA) producing microorganisms. International Journal of Applied Biology and Pharmaceutical Technology, 2(1): 120-124.
Singh, R., Parihar, P., Singh, M., Bajguz, A., Kumar, J., Singh, S., Singh, V.P. & Prasad, S. M. (2017). Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Frontiers in Microbiology, 8: 515, https://doi.org/10.3389/fmicb.2017.00515.
Soltani, N., Khavari-Nejad, R., Tabatabaie, M., Shokravi, S.H. & Valiente, E.F. (2006). Variation of Nitrogenase Activity, photosynthesis and pigmentation of cyanobacterium Fischerella ambigua strain FS18 under different irradiance and pH. World Journal of Microbiology and Biotechnology, 22 (6): 571-576.
Ueno, D., Matsumoto, K., Enami, T., Nishiyama, N., Kato, S.I. & Iwasaki K. (2019). Efficacy of an artificial microbial siderophore- Fe (III) with high redox potential on correcting Fe chlorosis in rice. Soil Science and Plant Nutrition, DOI:10.1080/00380768.2019.1648180.
Vaishampayan, A., Sinha, R.P. & Häder, D.P. (1998). Use of genetically improved nitrogen-fixing Cyanobacteria in rice paddy fields: Prospects as a source material for engineering herbicide sensitivity and resistance in plants. Botanica Acta, 111: 176–190.
Yandigeri, M.S., Yadav, A.K., Srinivasan, R., Kashyap, S. & Pabbi, S. (2011). Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Microbiology, 80(4): 558-565.
Zhang, W., Meng, Q., Liu, W., Qin, P., Li, B. & Xu, G. (2023). Overexpressing Ugp1 promotes phosphate uptake and accumulation in rice (
Oryza sativa).
Physiology and Molecular Biology of Plants,
https://doi.org/10.1007/s12298-023-01368-8.