Carbon quantum dots loaded-micro carriers production approaches, a promising adsorbent for contaminated soils remediation (A review)

Document Type : Review Article

Authors

Department of Soil Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

Abstract

Heavy metal contamination in soils presents a critical environmental challenge, threatening ecosystems, agricultural productivity, and human health. Conventional remediation techniques, such as biochar application, are limited by hydrophobicity, particle aggregation, and inefficient soil interaction. This study introduces a novel, sustainable adsorbent for heavy metal immobilization: carbon quantum dots (CQDs) loaded onto cyanobacteria-derived microcarriers. CQDs, with their high surface area, hydrophilicity, and abundant functional groups, offer superior adsorption potential. However, their direct use is hindered by mobility and separation challenges. To address this, cyanobacteria—rich in extracellular polymeric substances (EPS)—are utilized as dual precursors for CQD synthesis and microcarrier fabrication via the oilothermal pyrolysis method. This innovative technique employs an oil medium to prevent EPS dissolution during pyrolysis, enabling simultaneous carbonization of cyanobacterial cells and EPS into stable, spherical CQD-microcarrier composites. The resulting adsorbent combines the high adsorption capacity of CQDs with the structural advantages of microcarriers, ensuring uniform soil distribution, resistance to microbial degradation, and ease of separation. Experimental results demonstrate exceptional efficacy in immobilizing cadmium, with adsorption capacities exceeding traditional biochar by 40–60%, attributed to the composite’s hydrophilic functional groups (e.g., -OH, -COOH) and enhanced soil contact. The oilothermal method eliminates the need for costly precursors or hazardous equipment, offering a scalable, cost-effective, and eco-friendly solution. By integrating cyanobacteria cultivation, waste valorization, and one-step synthesis, this approach advances in-situ soil remediation, overcoming the limitations of existing technologies. The study underscores the potential of bio-based nanomaterials in sustainable environmental management, providing a blueprint for efficient, low-cost heavy metal mitigation while aligning with circular economy principles.

Keywords

Main Subjects


A Shahbazi, A., Soffianian, A. R., Mirghaffari, N., & Rezaei, H. (2018). Impact of agricultural activities on accumulation of Cadmium, Cobalt, Chromium, Copper, Nickel and Lead in soil of Hamedan province. Environmental Resources Research6(1), 79-87.
Adhikari, S., Mahmud, M. P., Nguyen, M. D., & Timms, W. (2023). Evaluating fundamental biochar properties in relation to water holding capacity. Chemosphere, 328, 138620. 
Adnan, M., Xiao, B., Ali, M. U., Xiao, P., Zhao, P., Wang, H., & Bibi, S. (2024). Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicology and Environmental Safety, 274, 116189.
Alengebawy, Ahmed, Sara Taha Abdelkhalek, Sundas Rana Qureshi, and Man-Qun Wang. "Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications." Toxics 9, no. 3 (2021): 42.
Angon, P. B., Islam, M. S., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon10(7).
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology12, 643972.
Chaukura, Nhamo, E. S. Muzawazi, G. Katengeza, and Alaa El Din Mahmoud. "Remediation technologies for contaminated soil systems." In Emerging Contaminants in the Terrestrial-Aquatic-Atmosphere Continuum: pp. 353-365. Elsevier, 2022. 
De Philippis, R., Margheri, M. C., Materassi, R., & Vincenzini, M. (1998). Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Applied and Environmental Microbiology, 64(3), 1130-1132. 
Decho, A. W., & Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in Microbiology, 8, 922. 
Dehkordi, M. M., Nodeh, Z. P., Dehkordi, K. S., Khorjestan, R. R., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 23, 102729.
Deng, B., Carter, R. A., Cheng, Y., Liu, Y., Eddy, L., Wyss, K. M., ... & Tour, J. M. (2023). High-temperature electrothermal remediation of multi-pollutants in soil. Nature Communications, 14(1), 6371. 
Edeh, I. G., & Mašek, O. (2022). The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. European Journal of Soil Science, 73(1), e13138. 
Edo, G. I., Samuel, P. O., Oloni, G. O., Ezekiel, G. O., Ikpekoro, V. O., Obasohan, P., ... & Agbo, J. J. (2024). Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chemistry and Ecology40(3), 322-349.
Food and Agriculture Organization of the United Nations. (2021). Global assessment of soil pollution: summary for policy makers. Food And Agriculture Organization of the United Nations.
Farid, R. K., & Rahimi, G. (2022). Oilothermal, a novel pyrolysis method for fabrication of carbon dots-loaded carriers from cyanobacteria for use in solid-phase extraction of cadmium. Journal of the Taiwan Institute of Chemical Engineers, 132, 104210. 
Gan, J. Y., Chong, W. C., Sim, L. C., Koo, C. H., Pang, Y. L., Mahmoudi, E., & Mohammad, A. W. (2020). Novel carbon quantum dots/silver blended polysulfone membrane with improved properties and enhanced performance in tartrazine dye removal. Membranes, 10(8), 175. 
Ghaedi, M. (Ed.). (2021). Adsorption: Fundamental processes and applications. Academic Press.
Gholami, L., & Rahimi, G. (2023). The efficiency of potato peel biochar for the adsorption and immobilization of heavy metals in contaminated soil. International Journal of Phytoremediation, 25(2), 263-273. 
Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., ... & Raskin, I. (1999). Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Sciences96(11), 5973-5977. 
Gloaguen, V., Morvan, H., & Hoffmann, L. (1995). Released and capsular polysaccharides of Oscillatoriaceae (Cyanophyceae, Cyanobacteria). Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 53-69.
Hong, K. J., Tan, C. H., Tan, S. T., & Chong, K. K. (2022). Morphology and topography of quantum dots. Graphene, Nanotubes and Quantum Dots-Based Nanotechnology, 727-770.
Hong, S. H., Lee, J. I., Lee, C. G., & Park, S. J. (2019). Effect of temperature on capping efficiency of zeolite and activated carbon under fabric mats for interrupting nutrient release from sediments. Scientific Reports, 9(1), 15754. 
Hsiao, Y. J., & Lin, L. Y. (2020). Enhanced surface area, graphene quantum dots, and functional groups for the simple acid-treated carbon fiber electrode of flexible fiber-type solid-state supercapacitors without active materials. ACS Sustainable Chemistry & Engineering, 8(6), 2453-2461. 
Innovations in chemical engineering for contaminated soil remediation. (2023, October 13). Utilities One. https://www.utilitiesone.com/innovations-in-chemical-engineering-for-contaminated-soil-remediation
Jelinek, R. (2016). Carbon quantum dots: synthesis, properties and applications. Springer.
Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. Journal of Health and Pollution, 9(24), 191203.
Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182(B), 247-268. 
Kotnala, S., Tiwari, S., Nayak, A., Bhushan, B., Chandra, S., Medeiros, C. R., & Coutinho, H. D. M. (2025). Impact of heavy metal toxicity on the human health and environment. Science of The Total Environment987, 179785.
Kumar, P., Dua, S., Kaur, R., Kumar, M., & Bhatt, G. (2022). A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 12(8), 4714-4759.
Kumar, V., Rout, C., Singh, J., Saharan, Y., Goyat, R., Umar, A., ... & Baskoutas, S. (2023). A review on the clean-up technologies for heavy metal ions contaminated soil samples. Heliyon9(5).
Leong, K. H., Chin, Y. H., Sim, L. C., Tan, B., Dai, C., & Saravanan, P. (2022). Physical properties of quantum dots. In Graphene, Nanotubes and Quantum Dots-Based Nanotechnology (pp. 687-709). Woodhead Publishing.
Li, Y. K., Yang, T., Chen, M. L., & Wang, J. H. (2018). Supported carbon dots serve as high-performance adsorbent for the retention of trace cadmium. Talanta, 180, 18-24. 
Liao, X., Li, Y., Miranda-Avilés, R., Zha, X., Anguiano, J. H. H., Sánchez, C. D. M., ... & Garzon, L. F. R. (2022). In situ remediation and ex situ treatment practices of arsenic-contaminated soil: An overview on recent advances. Journal of Hazardous Materials Advances8, 100157.
Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206-219.
Mahesh, N., Balakumar, S., Shyamalagowri, S., Manjunathan, J., Pavithra, M. K. S., Babu, P. S., ... & Govarthanan, M. (2022). Carbon-based adsorbents as proficient tools for the removal of heavy metals from aqueous solution: A state of art-review emphasizing recent progress and prospects. Environmental Research, 213, 113723.
Mahmodi, G., et al. (2020). From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydrate Research, 489, 107930.
Mishra, R. K., Mentha, S. S., Misra, Y., & Dwivedi, N. (2023). Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus6, 74-95. 
Mohammadi Arian, T., Khavari Farid, R., Rahimi, G., & Norouzi Goldareh, F. (2023). Fabrication of carbon quantum dots composite from algal-cyanobacterial precursor using oilothermal method for heavy metal preconcentration. International Journal of Environmental Science and Technology, 20(10), 11339-11354.
Mokhtari, M., Ebrahimi, A. A., & Rezaeinia, S. (2020). Prediction of greenhouse gas emissions in municipal solid waste landfills using LandGEM and IPCC methods in yazd, iran. Journal of Environmental Health and Sustainable Development5(4), 1145-1154.
Mustafa, S. A., Al-Rudainy, A. J., & Salman, N. M. (2024). Effect of environmental pollutants on fish health: An overview. Egyptian Journal of Aquatic Research, 50(2), 225-233.
Nuruzzaman, M., Bahar, M. M., & Naidu, R. (2025). Diffuse soil pollution from agriculture: Impacts and remediation. Science of the Total Environment962, 178398.
Parikh, A., & Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technology, 97(15), 1822-1827. 
Pariser, B. (2016, February 29). Can your business remain open when cleaning up contamination? Restorical. https://www.restorical.com/can-your-business-remain-open-when-cleaning-up-contamination
Rai, K., Misra, A. K., Ranjan, R. K., Wanjari, N., Rajak, R., Yadav, S. K., ... & Khan, M. A. (2024). Assessment of heavy metal and E. coli contamination in water sources of the east and south districts, Sikkim Himalaya, India. Water Conservation Science and Engineering, 9(1), 22.
Raklami, A., Meddich, A., Oufdou, K., & Baslam, M. (2022). Plants-Microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Sciences, 23(9), 5031.
Ray, A. (2022, July 20). Effective and efficient soil remediation techniques for site cleanup. Fehr Graham. https://www.fehrgraham.com/about-us/blog/effective-and-efficient-soil-remediation-techniques-for-site-cleanup
Rodríguez-Eugenio, N., McLaughlin, M., & Pennock, D. (2018). Soil pollution: a hidden reality.
Sabzehmeidani, M. M., Mahnaee, S., Ghaedi, M., Heidari, H., & Roy, V. A. (2021). Carbon based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances, 2(2), 598-627. 
Schejn, A., Chouchene, B., & Schneider, R. (2023). Quantum dots and hybrid structures as an innovative solution for bioimaging and diagnosis of viral infections. In Advances in Nano and Biochemistry (pp. 393-418). Academic Press.
Senila, M., Cadar, O., Senila, L., & Angyus, B. S. (2022). Simulated bioavailability of heavy metals (Cd, Cr, Cu, Pb, Zn) in contaminated soil amended with natural zeolite using diffusive gradients in thin-films (DGT) technique. Agriculture12(3), 321.
Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(39), 58514-58536.
Singh, S., Kant, C., Yadav, R. K., Reddy, Y. P., & Abraham, G. (2019). Cyanobacterial exopolysaccharides: composition, biosynthesis, and biotechnological applications. In Cyanobacteria (pp. 347-358). Academic Press. 
Tuerhong, M., Yang, X., & Yin, X. B. (2017). Review on carbon dots and their applications. Chinese Journal of Analytical Chemistry, 45(1), 139-150.
U.S. Environmental Protection Agency (USEPA). (2017). How to evaluate alternative cleanup technologies for underground storage tank sites: A guide for corrective action plan reviewers (EPA 510-B-17-003). https://www.epa.gov/ust
Vitz, E., Moore, J. W., Shorb, J., Prat-Resina, X., Wendorff, T., & Hahn, A. (2016, May 9). 21.9: Conjugated systems. Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/General_Chemistry/ChemPRIME_(Moore_et_al.)/21%3A_Spectra_and_Structure_of_Atoms_and_Molecules/21.09%3A_Conjugated_Systems
Yang, H. L., Bai, L. F., Geng, Z. R., Chen, H., Xu, L. T., Xie, Y. C., ... & Wang, X. M. (2023). Carbon quantum dots: Preparation, optical properties, and biomedical applications. Materials Today Advances, 18, 100376
Yuan, L., Wang, K., Zhao, Q., Yang, L., Wang, G., Jiang, M., & Li, L. (2024). An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons. Journal of Environmental Management, 349, 119342
Zhao, F. J., Tang, Z., Song, J. J., Huang, X. Y., & Wang, P. (2022). Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Molecular plant15(1), 27-44.
 
 
 

ارتقاء امنیت وب با وف ایرانی