Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. (2018). Effects of biochar and compost amendments on soil microbial communities and their functional genes in a sandy soil. Applied Soil Ecology, 129, 32-41.
Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921-929.
Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016a). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295-306. https://doi.org/10.1016/j.scitotenv.2015.11.054.
Agegnehu, G., Nelson, P. N., & Bird, M. I. (2016b). The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley in a Nitisol soil. Agricultural Research, 5, 1-13.
Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170.
Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31, 537-548.
Anderson, T. H., & Domsch, K. H. (1993). The metabolic quotient for CO₂ (qCO₂) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25, 393-395.
Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The Soil Management Assessment Framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal, 68, 1945-1962.
Arancon, N. Q., Edwards, C. A., & Bierman, P. (2004). Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource Technology, 93, 145-153. https://doi.org/10.1016/j.biortech.2003.10.014.
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473.
Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2013). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378, 1–33. https://doi.org/10.1007/s11104-013-1956-x.
Bender, S. F., Wagg, C., & van der Heijden, M. G. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31, 440-452.
Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486.
Bernal, M. P., Sommer, S. G., Chadwick, D., Qing, C., Guoxue, L., & Michel, F. C. (2017). Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Advances in Agronomy, 144, 143-233.
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66.
Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. https://doi.org/10.1007/s11274-011-0979-9.
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy, 5, 202-214.
Blanco-Canqui, H., & Lal, R. (2008). No-tillage and soil-profile carbon sequestration: an on-farm assessment. Soil Science Society of America Journal, 72, 693-701.
Bonanomi, G., Ippolito, F., & Scala, F. (2017). A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. Journal of Plant Pathology, 99, 1-12.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838.
Bünemann, E., Bongiorno, G., Bai, Z., Creamer, R., Deyn, G. B., Goede, R. G. M., Fleskens, L., Geissen, V., Kuyper, T., Mäder, P., Pulleman, M., Sukkel, W., Van Groenigen, J. W., & Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030.
Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 302, 1-17.
Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. (2014). Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 191, 5-16. https://doi.org/10.1016/j.agee.2013.10.009.
Chen, L., Dick, W. A., Kost, D., & Lal, R. (2018). Poultry litter biochar effects on soil properties and plant growth. Soil Science, 183, 127-134.
Colla, G., & Rouphael, Y. (2020). Biostimulants in agriculture. Frontiers in Plant Science, 11, 40.
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29-37.
Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. Agronomy for Sustainable Development, 30, 401-422. https://doi.org/10.1051/agro/2009040
Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3-11.
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14.
Fageria, N. K., & Baligar, V. C. (2008). Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Advances in Agronomy, 99, 345-399.
Fitzpatrick, C. R., Salas-González, I., Conway, J. M., Finkel, O. M., Gilbert, S., Russ, D., Teixeira, P. J. P. L., & Dangl, J. L. (2020). The plant microbiome: From ecology to reductionism and beyond. Annual Review of Microbiology, 74, 81-100. https://doi.org/10.1146/annurev-micro-022620-014327.
Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils, 35, 219-230.
Graber, E., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., David, D., Tsechansky, L., Borenshtein, M., & Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337, 481-496. https://doi.org/10.1007/s11104-010-0544-6.
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W., Vitousek, P. M., & Zhang, F. S. (2010). Significant acidification in major Chinese croplands. Science, 327, 1008–1010. https://doi.org/10.1126/science.1182570.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species–opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. https://doi.org/10.1038/nrmicro797.
Hoque, M. N., Imran, S., Hannan, A., Paul, N. C., Mahamud, M. A., Chakrobortty, J., Sarker, P., Irin, I. J., Brestic, M., & Rhaman, M. S. (2022). Organic amendments for mitigation of salinity stress in plants: A review. Life, 12, 1632. https://doi.org/10.3390/life12101632.
Idowu, O., van Es, H., Abawi, G., Wolfe, D., Schindelbeck, R., Moebius-Clune, B., & Gugino, B. (2009). Use of an integrative soil health test for evaluation of soil management impacts. Renewable Agriculture and Food Systems, 24, 214-224. https://doi.org/10.1017/S1742170509990068.
Insam, H., & de Bertoldi, M. (2007). Microbiology of the composting process. Waste Management Series, 8, 25-48.
Jeffery, S., Abalos, D., Spokas, K. A., & Verheijen, F. G. (2017). Biochar effects on crop yield. In Biochar for environmental management (pp. 301–326). Routledge.
Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2017). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144, 175-187.
Khan, M. S., Zaidi, A., Wani, P. A., & Ahemad, M. (2015). Role of phosphate-solubilizing microorganisms in sustainable agriculture. In: Soil Biology and Agriculture in the Tropics. Springer.
Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E. R., & Elad, Y. (2017a). Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytologist, 213, 1393-1406.
Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2017b). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 83, e00230-17.
Krishnakumar, S., Rajalakshmi, A. G., Balaganesh, B., Manikandan, P., Vinoth, C., & Rajendran, V. (2014). Impact of biochar on soil health. International Journal of Advanced Research, 2, 933-950.
Kumar, A., Singh, R., Giri, D., & Kumar, S. (2020). Integrated application of biochar and microbial inoculants enhances soil enzyme activities and nutrient availability. Journal of Soil Science and Plant Nutrition, 20, 947-957.
Kumar, V., Yadav, D. S., & Yadav, R. K. (2014). Effect of organic and biofertilizers on productivity, grain quality and nutrient status of Basmati rice. Int. J. Agric. Biol, 16, 1113-1119.
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22.
Lazcano, C., & Domínguez, J. (2011). The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. In Soil Nutrients (pp. 1-23). Nova Science Publishers.
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Routledge.
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60-68.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43, 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022.
Lan, T., He, X., Wang, Q., Deng, O., Zhou, W., Luo, L., Chen, G., Zeng, J., Zeng, M., Xiao, H., Gao, X. (2022). Synergistic effects of biological nitrification inhibitor, urease inhibitor, and biochar on NH3 volatilization, N leaching, and nitrogen use efficiency in a calcareous soil–wheat system. Applied Soil Ecology, 174, 104412. https://doi.org/10.1016/j.apsoil.2022.104412.
Liu, Z., Dugan, B., Masiello, C. A., & Gonnermann, H. M. (2017). Biochar particle size, shape, and porosity act together to influence soil water properties. Plos One, 12, e0179079.
Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24, 3315-3335.
Malusá, E., Sas-Paszt, L., & Ciesielska, J. (2016). Technologies for beneficial microorganisms inocula used as biofertilizers. Scientific Bulletin. Series F. Biotechnologies, 20, 45-59.
Meena, M. D., Yadav, R. K., Narjary, B., Yadav, G., Jat, H. S., Sheoran, P., Meena, M. K., Antil, R. S., Meena, B. L., Singh, H. V., Singh Meena, V., Rai, P. K., Ghosh, A., & Moharana, P. C. (2019). Municipal solid waste (MSW): Strategies to improve salt-affected soil sustainability: A review. Waste Management, 84, 38-53. https://doi.org/10.1016/j.wasman.2018.11.020.
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37, 634-663.
Mishra, P. K., Patel, A., & Chauhan, H. L. (2019). Impact of integrated use of biochar and microbial inoculants on productivity of tomato and soil quality. Vegetable Science, 46, 20-25.
Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2013). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Environmental and Experimental Botany, 107, 71-82.
Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2012). Microbial diversity and soil functions. European Journal of Soil Science, 63, 13-30. https://doi.org/10.1046/j.1351-0754.2003.0556.x.
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: A critical review. Biochar, 1, 3-22. https://doi.org/10.1007/s42773-019-00009-2.
Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789-799.
Riaz, M., Zahid, M., Arif, M.S., et al. (2021). Combined application of biochar and plant growth-promoting rhizobacteria improves growth, yield and nitrogen use efficiency of maize. Agronomy, 11, 471. https://doi.org/10.3390/agronomy11030471.
Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulants in agriculture. Frontiers in Plant Science, 11, 40.
Schloter, M., Nannipieri, P., Sørensen, S. J., & van Elsas, J. D. (2018). Microbial indicators for soil quality. Biology and Fertility of Soils, 54, 1-10.
Schmidt, H. P., Pandit, B. H., Martinsen, V., Cornelissen, G., & Conte, P. (2015). Fourfold increase in pumpkin yield in response to biochar-based fertilization strategies in Nepal. Agronomy for Sustainable Development, 35, 513-522.
Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., & Mathimaran, N. (2018). Improving crop yield and nutrient use efficiency via biofertilization-a global meta-analysis. Frontiers in Plant Science, 8, 2204. https://doi.org/10.3389/fpls.2017.02204.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587. https://doi.org/10.1186/2193-1801-2-587.
Singh, R. P., Jha, P. N., & Sharma, L. (2019). Plant growth promoting rhizobacteria: current status and recent developments. In Recent Advances in Microbial Biotechnology, 161–188.
Sun, Y., Yuan, H., Li, H., Wang, L., et al. (2021). Biochar improves soil properties and soil microbial community in a degraded coastal soil. Science of the Total Environment, 750, 141323.
Thies, J. E., Rillig, M. C., & Graber, E. R. (2015). Biochar effects on the abundance, activity and diversity of the soil biota. Biochar for Environmental Management, 327-389.
Tian, T., Yang, Z., Li, X., et al. (2022). Microbial inoculants regulate soil enzymes and bacterial community to improve plant performance. Science of the Total Environment, 816, 151614.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18, 607-621.
Van Eerd, L. L., Congreves, K. A., Hayes, A., Verhallen, A., & Hooker, D. C. (2014). Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Canadian Journal of Soil Science, 94, 303-315. https://doi.org/10.4141/cjss2013-093.
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586. https://doi.org/10.1023/A:1026037216893.
Venturi, V., & Keel, C. (2016). Signaling in the rhizosphere. Trends in plant science, 21, 187-198.
Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and Soil, 300, 9-20.
Xu, G., Lv, Y., Sun, J., Shao, H., & Wei, L. (2016). Recent advances in biochar applications in agricultural soils: benefits and environmental implications. Science of the Total Environment, 550, 837-850. https://doi.org/10.1016/j.scitotenv.2016.01.032.
Yu, O., Raichle, B., & Sink, S. (2019). Impact of biochar and compost on soil microbial community and nitrogen transformation in a degraded soil. Biology and Fertility of Soils, 55, 731-742.
Zhai, L., Wang, J., Liu, H., & Guo, Z. (2015). Effects of biochar and compost amendments on soil properties and maize growth in a saline–alkaline soil. Soil & Tillage Research, 155, 85-94. https://doi.org/10.1016/j.still.2015.07.007.
Zhang, M., Liu, Y., Wei, Q., & Gou, J. (2021). Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in maize rhizosphere soil. Applied Soil Ecology, 170, 104294.
Zhang, S., Wang, N., Li, Y., et al. (2018). Combined application of biochar and arbuscular mycorrhizal fungi improves soil properties and plant performance. Applied Soil Ecology, 128, 52-60.
https://doi.org/10.1016/j.apsoil.2018.04.001.
Zhou, M., Brandt, K. K., Sørensen, J., & Trivedi, P. (2016). Linking root exudation and soil nutrient cycling: perspectives from microbial ecology. Frontiers in Plant Science, 7, 1570.