Alabi, O. A., Ologbonjaye, K. I., Awosolu, O., & Alalade, O. E. (2019). Public and environmental health effects of plastic wastes disposal: a review. Journal Toxicology and Risk Assessment, 5, 21. https://doi.org/10.23937/2572-4061.1510021.
Ali, I., Cheng, Q., Ding, T., Yiguang, Q., Yuechao, Z., Sun, H., Peng, C., Naz, I., Li, J., & Liu, Jing-Fu. (2021). Micro-and nanoplastics in the environment: Occurrence, detection, characterization and toxicity–A critical review. Journal of Cleaner Production, 313, 127863. https://doi.org/10.1016/j.jclepro.2021.127863.
Alvarez, M. E., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773-784. https://doi.org/10.1016/s0092-8674(00)81405-1.
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030.
Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment a review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176. https://doi.org/10.1016/j.envint.2017.02. 013.
Azeem, I., Adeel, M., Ahmad, M. A., Shakoor, N., Jiangcuo, G. D., Azeem, K., Ishfaq, M., Shakoor, A., Ayaz, M., Xu, M., & Rui, Y. (2021). Uptake and accumulation of nano/microplastics in plants: a critical review. Nanomaterials, 11, 2935. https://doi.org/10.3390/nano11112935.
Bakhshaee, A., Babakhani, P., Ashiq, M. M., Bell, K., Salehi, M., & Jazaei, F. (2025). Potential impacts of microplastic pollution on soil–water–plant dynamics. Scientific Reports, 15, 9784. https://doi.org/10.1038/s41598-025-93668-0.
Bandmann, V., Müller, J. D., Köhler, T., & Homann, U. (2012). Uptake of fuorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Letters, 586, 3626–3632. https://doi.org/10.1016/j.febslet.2012.08.008.
Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R., Lundebye, A. K., & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133, 336–348. https://doi.org/10.1016/j.marpolbul.2018.05.047.
Barceló, D., & Picó, Y. (2019). Microplastics in the global aquatic environment: analysis, effects, remediation and policy solutions. Journal of Environmental Chemical Engineering, 7, 103421. https://doi.org/10.1016/ j.jece.2019.103421.
Barría, C., Brandts, I., Tort, L., Oliveira, M., & Teles, M. (2020). Effect of nanoplastics on fish health and performance: A review. Marine Pollution Bulletin, 151, 110791. https://doi.org/10.1016/j.marpolbul.2019.110791.
Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49, 3907–3919. https://doi.org/10.1016/j.carbon.2011.05.029.
Bhowmik, A., & Saha, G. (2025). Microplastics in our waters: insights from a configurative systematic review of water bodies and drinking water sources. Microplastics, 4, 24. https://doi.org/10.3390/microplastics4020024.
Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of The Total Environment, 612, 422–435.
https://doi.org/10.1016/j.scitotenv.2017.08.086. https://doi.org/10.1016/j.ecolind.2023.109966.
Bonanomi, M., Salmistraro, N., Porro, D., Pinsino, A., Colangelo, A. M., & Gaglio, D. (2022). Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. Chemosphere, 303, 134947. https://doi.org/10.1016/j.chemosphere.2022.134947.
Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental science & technology, 53, 11496–11506. https://doi.org/10.1021/acs.est.9b03304.
Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P., & Vijver, M. G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774–781.
https://doi.org/10.1016/j.chemosphere.2019.03.163. https://doi.org/10.1016/j.jhazmat.2020.123590.
Brandts, I., Teles, M., Tvarijonaviciute, A., Pereira, M. L., Martins, M. A., Tort, L., & Oliveira, M. (2018). Effects of polymethylmethacrylate nanoplastics on Dicentrarchus labrax. Genomics, 110, 435-441. https://doi.org/10.1016/j.ygeno.2018.10.006.
Brodhagen, M., Goldberger, J. R., Hayes, D. G., Inglis, D. A., Marsh, T. L., & Miles, C. (2017). Policy considerations for limiting unintended residual plastic in agricultural soils. Environmental Science & Policy, 69, 81e84. https://doi.org/10.1016/j.envsci.2016.12.014.
Campanale, C., Galafassi, S., Savino, I., Massarelli, C., Ancona, V., Volta, P., & Uricchio, V.F. (2021). Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. Science of The Total Environment, 805, 150431. https://doi.org/10.1016/j.scitotenv.2021.150431.
Campanale, C., Massarelli, C., Savino, I., Locaputo, V., & Uricchio, V. F. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17, 1212. https://doi.org/10.3390/ijerph17041212.
Cao, D., Wang, X., Luo, X., Liu, G., & Zheng, H. (2017). Efects of polystyrene microplastics on the ftness of earthworms in an agricultural soil. IOP Conference Series: Earth and Environmental Science, 61, 012148. https://doi.org/10.1088/1755-1315/61/1/012148.
Cedervall, T., Hansson, L. A., Lard, M., Frohm, B., & Linse, S. (2012). Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One, 7, 1–6. https:// doi.org/10.1371/journal.pone.0032254.
Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L., Carvalho, I., Faria, T., C., P., 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89, 907–916
Chen, Y., Leng, Y., Liu, X., & Wang, J. (2020). Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environmental Pollution, 257, 113449. https://doi.org/10.1016/j.envpol.2019.113449.
Cheng, H., Duan, Z., Wu, Y., Wang, Y., Zhang, H., Shi, Y., Zhang, H., Wei, Y., & Sun, H. (2022). Immunotoxicity responses to polystyrene nanoplastics and their related mechanisms in the liver of zebrafish (Danio rerio) larvae. Environment International, 161, 107128. https://doi.org/10.1016/j.envint.2022.107128.
Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025.
Colzi, I., Renna, L., Bianchi, E., Castellani, M. B., Coppi, A., Pignattelli, S., Loppi, S., & Gonnelli, C. (2022). Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423, 127238. https://doi.org/10.1016/j.jhazmat.2021.127238.
Conti, G. O., Ferrante, M., Banni, M., Favara, C., Nicolosi, I., Cristaldi, A., Fiore, M., & Zuccarello, P. (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187, 109677. https://doi.org/10.1016/j.envres.2020.109677.
Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53, 7068-7074. https://doi.org/10.1021/acs.est.9b01517.
Deng, T. H. B., Cloquet, C., Tang, Y. T., Sterckeman, T., Echevarria, G., Estrade, N., Morel, J. L., & Qiu, R. L. (2014). Nickel and zinc isotope fractionation in hyper accumulating and non accumulating plants. Environmental Science & Technology, 48, 11926–11933. https://doi.org/10.1021/es5020955.
de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53, 6044-6052. https://doi.org/10.1021/acs.est.9b01339 .
Ding, L., Zhang, S. Y., Wang, X. Y., Yang, X. M., Zhang, C. T., Qi, Y. B., & Guo, X. T. (2020). The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China. Science of the Total Environment, 720, 137525. https://doi.org/10.1016/j.scitotenv.2020.137525.
Dong, Y., Gao, M., Qiu, W., & Song, Z. (2021). Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. Journal of Hazardous Materials, 411, 125055. https://doi.org/10.1016/j.jhazmat.2021.125055.
El-Darier, S. M., & Youssef, R. S. (2000). Effect of soil type, salinity, and allelochemicals on germination and seedling growth of a medicinal plant Lepidium sativum L. Annals of Applied Biologyl, 136, 273e279. https://doi.org/10.1111/j.1744- 7348.2000.tb00035.x
Espi, E. (2006). PLastic films for agricultural applications. Journal of Plastic Film & Sheeting, 22, 85-102. http://dx.doi.org/10.1177/8756087906064220.
FAO. (2021). Assessment of agricultural plastics and their sustainability. A call for action. Rome, Italy. https://doi.org/10.4060/cb7856en.
Fournier, E., Etienne-Mesmin, L., Grootaert, C., Jelsbak, L., Syberg, K., Blanquet-Diot, S., & Mercier-Bonin, M. (2021). Microplastics in the human digestive environment: A focus on the potential and challenges facing in vitro gut model development. Journal of Hazardous Materials, 415, 125632. https://doi.org/10.1016/j.jhazmat.2021.125632.
Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237, 124482. https://doi.org/10.1016/j.chemosphere.2019.124482.
Gao, S., Mu, X., Li, W., Wen, Y., Ma, Z., Liu, K., & Zhang, C. (2025). Invisible threats in soil: microplastic pollution and its effects on soil health and plant growth. Environmental Geochemistry and Health, 47, 158. https://doi.org/10.1007/s10653-025-02464-2.
Gao, M., Wang, Z., Jia, Z., Zhang, H., & Wang, T. (2023). Brassinosteroids alleviate nanoplastic toxicity in edible plants by activating antioxidant defense systems and suppressing nanoplastic uptake. Environment International, 174, 107901. https://doi.org/10.1016/j.envint.2023.107901.
Gigault, J., Halle, A. T., Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., El Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024.
Gong, W., Zhang, W., Jiang, M., Li, S., Liang, G., Bu, Q., & Lu, A. (2021). Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Science of the Total Environment, 796, 148750. https://doi.org/10.1016/j.scitotenv.2021.148750.
Goodman, K. E., Hare, J. T., Khamis, Z. I., Hua, T., & Sang, Q. X. A. (2021). Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chemical Research in Toxicology, 34, 1069-1081. http://dx.doi.org/10.1021/acs.chemrestox.0c00486.
Goodman, K. E., Hua, T., & Sang, Q. X. A. (2022). Effects of polystyrene microplastics on human kidney and liver cell morphology, cellular proliferation, and metabolism. ACS Omega, 7, 34136-34153. http://dx.doi.org/10.1021/acsomega.2c03453.
Guo, X., Cheng, C., Cao, C., Li, D., Fan, R., & Wei, X. (2023). Metabolomic characteristics in human CD34+ hematopoietic stem/progenitor cells exposed to polystyrene nanoplastics. Food and Chemical Toxicology, 177, 113817. https://doi.org/10.1016/j.fct.2023.113817.
He, Y., Li, J., Chen, J., Miao, X., Li, G., He, Q., Xu, H., Li, H., & Wei, Y. (2020). Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. Science of the Total Environment, 723, 138180. https://doi.org/10.1016/j.scitotenv.2020.138180.
He, D., Zhang, Y., & Gao, W. (2021). Micro (nano) plastic contaminations from soils to plants: human food risks. Current Opinion in Food Science, 41, 116-121. https://doi.org/10.1016/j.cofs.2021.04.001.
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190.
Huang, Y., Liu, Q., Jia, W., Yan, C., & Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096. https://doi.org/10.1016/j.envpol.2020.114096.
Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831–838. https://doi.org/10.1016/j.envpol.2019.04.055.
Khalid, N., Aqeel, M., & Noman, A. (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, 115653. https://doi.org/10.1016/j.envpol.2020.115653.
Kim, S. W., Jeong, S. W., & An, Y. J. (2021). Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere, 276, 130178. https://doi.org/10.1016/j.chemosphere.2021.130178.
Kochanek, A., Grąz, K., Potok, H., Gronba-Chyła, A., Kwaśny, J., Wiewiórska, I., Ciuła, J., Basta, E., & Łapiński, J. (2025). Micro- and nanoplastics in the environment: current state of research, sources of origin, health risks, and regulations—a comprehensive review. Toxics, 13, 564. https://doi.org/10.3390/toxics13070564.
Koelmans, A. A., Besseling, E., Shim, & W. J. (2015). Nanoplastics in the aquatic environment.Critical review. In: Marine anthropogenic litter. Springer. pp. 325-340. https://doi.org/10.1007/978-3-319-16510-3_12.
Kumar, M., Xiong, X., He, M., Tsang, D. C., Gupta, J., Khan, E., Harrad, S., Hou, D., Ok, Y. S., & Bolan, N. S. (2020). Microplastics as pollutants in agricultural soils. Environmental Pollution, 265, 114980. https://doi.org/10.1016/j.envpol.2020.114980.
Lakshmikanthan, D., & Chandrasekaran, N. (2022). Humic acid alleviates the toxicity of nanoplastics towards Solanum lycopersicum. Agronomy, 12, 2787. https://doi.org/10.3390/agronomy12112787.
Lambert, S., & Wagner, M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265–268. https://doi.org/10.1016/J.CHEMOSPHERE.2015.11.078.
Larue, C., Sarret, G., Castillo‐Michel, H., & Pradas del Real, A. E. (2021). A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms. Small, 17, 2005834. https://doi.org/10.1002/smll.202005834.
Lehner, R., Weder, C., Petri-Fink, A., & Rothen-Rutishauser, B. (2019). Emergence of nanoplastic in the environment and possible impact on human health. Environmental Science & Technology, 53, 1748–1765. https://doi.org/10.1021/acs.est.8b05512.
Leslie, H. A., Van Velzen, M. J., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantifcation of plastic particle pollution in human blood. Environment International, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199.
Li, Y., Guo, M., Niu, S., Shang, M., Chang, X., Sun, Z., Zhang, R., Shen, X., & Xue, Y. (2023). ROS and DRP1 interactions accelerate the mitochondrial injury induced by polystyrene nanoplastics in human liver HepG2 cells. Chemico-Biological Interactions, 379, 110502. https://doi.org/10.1016/j.cbi.2023.110502.
Li, Z., Li, Q., Li, R., Zhao, Y., Geng, J., & Wang, G. (2020b). Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environmental Science and Pollution Research, 27, 30306–30314. https://doi.org/10.1007/s11356-020-09349-0.
Li, Z., Li, Q., Li, R. Zhou, J., & Wang, G. (2021). The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ Sci Pollut Res, 28, 16042–16053.
https://doi.org/10.1007/s11356-020-11702-2
Li, Z., Li, R., Li, Q., Zhou, J., & Wang, G. (2020a). Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 255, 127041. https://doi.org/10.1016/j.chemosphere.2020.127041.
Lian, J., Liu, W., Meng, L., Wu, J., Chao, L., Zeb, A., & Sun, Y. (2021). Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution, 280, 116978. https://doi.org/10.1016/j.envpol.2021.116978.
Lian, Y., Liu, W., Shi, R., Zeb, A., Wang, Q., Li, J., Zheng, Z., & Tang, J. (2022). Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Journal of Hazardous Materials, 435, 129057. https://doi.org/10.1016/j.jhazmat.2022.129057.
Liu, E., He, W., & Yan, C. (2014). ‘White revolution’to ‘white pollution’dagricultural plastic film mulch in China. Environmental Research Letters, 9, 091001. http://dx.doi.org/10.1088/1748-9326/9/9/091001.
Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Cao, C., Shi, H., Yang, X., & He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862. https://doi.org/10.1016/j.envpol.2018.07.051.
Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and accumulation of polystyrene microplastics in zebrafsh (Danio rerio) and toxic efects in liver. Environmental Science & Technology, 50, 4054–4060. https://doi.org/10.1021/acs.est.6b00183.
Lusher, A. L., Hollman, P. C. H., & Mendoza, H. (2017). Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper, 615.
Luo, Y., Li, L., Feng, Y., Li, R., Yang, J., Peijnenburg, W. J., & Tu, C. (2022). Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology, 17, 424–431. https://doi.org/10.1038/s41565-021-01063-3.
Lv, W., Zhou, W., Lu, S., Huang, W., Yuan, Q., Tian, M., Lv, W., & He, D. (2019). Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in Shanghai, China. Science of the Total Environment, 652, 1209–1218. https://doi.org/10.1016/j.envpol.2022.120656.
Lwanga, E. H., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523–531. https://doi.org/10.1016/j.envpol.2016.09.096.
Malinowska, K., Bukowska, B., Piwoński, I., Foksiński, M., Kisielewska, A., Zarakowska, E., Gackowski, D., & Sicińska, P. (2022). Polystyrene nanoparticles: the mechanism of their genotoxicity in human peripheral blood mononuclear cells. Nanotoxicology, 16, 791-811. https://doi.org/10.1080/17435390.2022.2149360.
Mattsson, K., Jocic, S., Doverbratt, I., & Hansson, L. A. (2018). Nanoplastics in the aquatic environment. in microplastic contamination in aquatic environments; Elsevier: Amsterdam, The Netherlands, pp. 379–399. https://doi.org/10.1016/B978-0-12-813747-5.00013-8.
Meng, F., Yang, X., Riksen, M., Xu, M., & Geissen, V. (2021). Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of the Total Environment, 10, 142516. https://doi.org/10.1016/j.scitotenv.2020.142516.
Meng, F., Yang, X., Riksen, M., & Geissen, V. (2022). Efect of diferent polymers of microplastics on soil organic carbon and nitrogen–A mesocosm experiment. Environmental Research, 204, 111938. https://doi.org/10.1016/j.envres.2021.111938.
Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmental. Science. Technology. 50, 10777-10779. https://doi.org/10.1021/acs.est.6b04140.
Okeke, E. S., Okoye, C. O., Atakpa, E. O., Ita, R. E., Nyaruaba, R., Mgbechidinma, C. L., & Akan, O. D. (2021). Microplastics in agroecosystemsimpacts on ecosystem functions and food chain. Resources, Conservation and Recycling, 177, 105961. https://doi.org/10.1016/j.resconrec.2021.105961.
Prata, J. C., da Costa, J. P., Girão, A. V., Lopes, I., Duarte, A. C., & RochaSantos, T. (2019). Identifying a quick and efficient method of removing organic matter without damaging microplastic samples. Science of the Total Environment, 686, 131–139. https://10.1016/j.scitotenv. 2019.05.456.
Qi, Y., Yang, X., Pelaez, A. M., Huerta Lwanga, E., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V. (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048-1056. https://10.1016/j.scitotenv.2018.07.229.
Rakesh, S. S., Ramasamy, M., Ramesh, P. T., Maheswari, M., Shri Rangasami, S. R., & Yuvaraj, M. (2020). Nanoplastics in 21st Century. Biotica Research Today, 2, 356-358.
Ren, X., Tang, J., Wang, L., & Liu, Q. (2021). Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil, 462, 561-576. https://doi.org/10.1007/s11104-021-04869-1.
Rillig, M. C., Ingraffia, R., & Machado, A. A. D. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, https://doi.org/10.3389/fpls.2017.01805.
Sarma, D. K., Dubey, R., Samarth, R. M., Shubham, S., Chowdhury, P., Kumawat, M., Verma, V., Tiwari, R. R., & Kumar, M. (2022). The biological effects of polystyrene nanoplastics on human peripheral blood lymphocytes. Nanomaterials, 12, 1632. https://doi.org/10.3390/nano12101632.
Shen, F., Li, D., Guo, J., & Chen, J. (2022). Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticles based on human placental cells. Water Research, 223, 118960. https://doi.org/10.1016/j.watres.2022.118960.
Shen, M., Zhang, Y., Zhu, Y., Song, B., Zeng, G., Hu, D., Wen, X., & Ren, X. (2019). Recent advances in toxicological research of nanoplastics in the environment: a review. Environmental Pollution, 252, 511–521. https://doi.org/10.1016/j.envpol.2019.05.102.
Song, Y. K., Hong, S. H., Eo, S., Han, G. M., & Shim, W. J. (2020). Rapid production of micro-and nanoplastics by fragmentation of expanded polystyrene exposed to sunlight. Environmental Science & Technology, 54, 11191-11200. https://doi.org/10.1021/acs.est.0c02288.
Sun, H., Lei, C., Xu, J., & Li, R. (2021). Foliar uptake and leafto-root translocation of nanoplastics with diferent coating charge in maize plants. Journal of Hazardous Materials, 416, 125854. https://doi.org/10.1016/j.jhazmat.2021.125854.
Thompson, R. C., Swan, S. H., Moore, C. J., & vom Saal, F. S. (2009). Our plastic age. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364, 1973-1976. https://doi.org/10.1098/rstb.2009.0054.
Tian, L., Jinjin, C., Ji, R., Ma, Y., & Yu, X. (2021). Microplastics in agricultural soils: Sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311. https://doi.org/10.1016/j.coesh.2021.100311.
Tong, Y., Ding, J., Xiao, M., Shahbaz, M., Zhu, Z., Chen, M., Kuzyakov, Y., Deng, Y., Chen, J., & Ge, T. (2023). Microplastics affect activity and spatial distribution of C, N, and P hydrolases in rice rhizosphere. Soil Ecology Letters, 5, 220138. https://doi.org/10.1007/s42832-022-0138-2.
Torres, F. G., Dioses-Salinas, D. C., Pizarro-Ortega, C. I., & De-la-Torre, G. E. (2021). Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Science of the Total Environment, 757, 143875. https://doi.org/10.1016/j.scitotenv.2020.143875.
Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., Prasad, S. M., Singh, P. K., Dubey, N. K., Pandey, A. C., & Chauhan, D. K. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry, 110, 167–177. https://doi.org/10.1016/j.plaphy.2016.06.015.
Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F. J., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780. https://doi.org/10.3762/bjnano.6.181.
Wang, W., Yuan, W., Xu, E. G., Li, L., Zhang, H., & Yang, Y. (2021). Uptake, translocation, and biological impacts of micro (nano) plastics in terrestrial plants: Progress and prospects. Environmental Research, 203, 111867. https://doi.org/10.1016/j.envres.2021.111867.
Wang, F., Zhang, X., Zhang, S., Zhang, S., & Sun, Y. (2020). Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 254, 126791. https://doi.org/10.1016/j.chemosphere. 2020.126791.
Weerasinghe, T., & Madawala, H. (2022). Potential impacts of two types of microplastics on Solanum lycopersicum L. and arbuscular mycorrhizal fungi. Ceylon Journal of Science, 51, 137. https://doi.org/10.4038/cjs.v51i2.8008.
Wolff Leal, T., Tochetto, G., Lima, S. V. M., de Oliveira. P. V., Schossler. H. J., de Oliveira. C. R. S., & da Silva Júnior, A, H. (2025). Nanoplastics and microplastics in agricultural systems: effects on plants and implications for human consumption. Microplastics, 4, 16. https://doi.org/10.3390/microplastics4020016.
Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P. S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, 137512.
Wu, J., Liu, W., Zeb, A., Lian, J., Sun, Y., & Sun, H. (2021). Polystyrene microplastic interaction with Oryza sativa: Toxicity and metabolic mechanism. Environmental Science: Nano, 8, 3699–3710. https://doi.org/10.1039/D1EN00636C.
Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P. C., Tang, C., Gan, J., & Xu, J. (2019). Microplastics in the soil environment: Occurrence, risks, interactions and fate–A review. Critical Reviews in Environmental Science and Technology, 50, 2175–2222. https://doi.org/10.1080/10643389.2019.1694822.
Yan, C., He, W., & Turner, N. (2014). Plastic-film mulch in Chinese agriculture: importance and problems. World Agriculture, 4, 32e36.
Yang, S., Cheng, Y., Chen, Z., Liu, T., Yin, L., Pu, Y., & Liang, G. (2021). In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicology and Environmental Safety, 226, 112837. https://doi.org/10.1016/j.ecoenv.2021.112837.
Yee, M. S. L., Hii, L. W., Looi, C. K., Lim, W. M., Wong, S. F., Kok, Y. Y., Tan, B. K., Wong, C. Y., & Leong, C. O. (2021). Impact of microplastics and nanoplastics on human health. Nanomaterials, 11, 496. https://doi.org/10.3390/nano11020496.
Yoon, J. H., Kim, B. H. & Kim, K. H. (2024). Distribution of microplastics in soil by types of land use in metropolitan area of Seoul. Applied Biological Chemistry, 67, 15. https://doi.org/10.1186/s13765-024-00869-8.
Zhang, S., Wang, J., Liu, X., Qu, F., Wang, X., Wang, X., Li, Y., & Sun, Y. (2019). Microplastics in the environment: A review of analytical methods, distribution, and biological efects. TrAC Trends in Analytical Chemistry, 111, 62–72. https://doi.org/10.1016/j.trac.2018.12.002.
Zhao, J., Ren, W., Dai, Y., Liu, L., Wang, Z., Yu, X., Zhang, J., Wang, X., & Xing, B. (2017). Uptake, distribution, and transformation of CuO NPs in a foating plant Eichhornia crassipes and related stomatal responses. Environmental Science & Technology, 51, 7686–7695. https://doi.org/10.1021/acs.est.7b01602.
Zhou, C. Q., Lu, C. H., Mai, L., Bao, L. J., Liu, L. Y., & Zeng, E. Y. (2021). Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials, 401, 123412. https://doi.org/10.1016/j.jhazmat.2020.123412.