Bahrami, A., Danesh, M., & Bahrami, M. (2022). Studying sand component of soil texture using the spectroscopic method. Infrared Physics & Technology, 122, 104056.
Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., & McBratney, A. (2010). Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29 (9), 1073–1081.
Camargo, O. A., Moniz, A. C., Jorge, J. A., & Valadares, J. M. (2009). Methods of Chemical, Mineralogical and Physical Analysis of Soils Used in the Pedology Section (Technical Bulletin No. 106), Instituto Agronômico (IAC), Campinas.
Casa, R., Castaldi, F., Pascucci, S., Palombo, A., & Pignatti, S. (2013). A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma, 197, 17–26.
Chang, C. W., & Laird, D. A. (2002). Near-infrared reflectance spectroscopy analysis of soil C and N. Soil Science, 167: 110–116.
Danesh, M., Bahrami, H. A., Darvishzadeh, R., & Noroozi, A. A. (2016). Investigating clay contents using laboratory diffuse reflectance spectroscopy. Iranian Journal of Remote Sensing & GIS, 8(1), 71-94. (In Persian).
Danesh, M., Bahmanyar, M. A., & Emadi, S. M. (2022). Reflectance study of soil silt using proximal sensing in Northern Iran. Journal of Civil Engineering and Environmental Sciences, 8(1), 048-056.
Danesh, M., & Bahrami, H. A. (2022). Modeling of Soil Sand Particles Using Spectroscopy Technology, Communications in Soil Science and Plant Analysis, 53, 2216-2228.
Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., & Scholten, T. (2020). Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing, 12(14), 2234.
Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., & Linderman, M. (2019). Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma, 337, 32-41.
Hong, Y., Chen, S., Liu, Y., Zhang, Y., Yu, L., Chen, Y., & Liu, Y. (2019). Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy. Catena, 174, 104–116.
Ji, W. J., Li, S., Chen, S. C., Shi, Z., Viscarra Rossel, R. A., & Mouazen, A. M. (2016). Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage & Research, 155, 492–500.
Ji, W. J., Shi, Z., Huang, J. Y., & Li, S. (2014). In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy. PLoS ONE, 9(8), e105708.
Lu, P., Wang, L., Niu, Z., Li, L., & Zhang, W., (2013). Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery, Journal of Geochemical Exploration, 132, 26–33.
Mura, S., Cappai, C., Greppi, G. F., Barzaghi, S., Stellari, A., & Cattaneo, T. M. P. (2019). Vibrational spectroscopy and Aquaphotomics holistic approach to determine chemical compounds related to sustainability in soil profiles. Computers and Electronics in Agriculture, 159, 92–96.
Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Abbasi, M., Dematte, J. A. M., Arthur, E., & Panagos, P. (2018). Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma, 314, 102-112.
Padarian, J., Minasny, B., & McBratney, A. B. (2019). Using deep learning to predict soil properties from regional spectral data. Geoderma Regional, 16, e00198.
Peng, L., Cheng, H., Wang, L. J., & Zhu, D. (2020). Comparisons the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratory Vis-NIR spectroscopy data. Canadian Journal of Soil Science, 101(1), 33-44.
Pudełko, A., & Chodak, M. (2020). Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods. Geoderma, 368, 114306.
Qi, F., Zhang, R., Liu, X., Niu, Y., Zhang, H., Li, H., Li, J., Wang, B., & Zhang, G. (2018). Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil & Tillage Research, 184, 45-51.
Tumsavas, Z., Tekin, Y., Ulusoy, Y., & Mouazen, A. M. (2018). Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosystems Engineering. 177, 90-100.
Viscarra Rossel, R. A., & Webster, R. (2012). Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. European Journal of Soil Science, 63, 848–860.
Xia, F., Peng, J., Wang, Q. L., Zhou, L. Q., & Shi, Z. (2015). Prediction of heavy metal content in soil of cultivated land: hyperspectral technology at provincial scale. Journal of Infrared Millim. Waves, 34, 593–605.
Xu, D., Ma, W., Chen, S., Jiang, Q., He, K., & Shi, Z. (2018a). Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy. Computers and Electronics in Agriculture, 144, 1-8.
Xu, S., Zhao, Y., Wang, M., & Shi, X. (2018b). Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma, 310, 29-43.
Zhao, L., Hong, H., Fang, Q., Algeo, T. J., Wang, C., Li, M., & Yin, K. (2020). Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting Quaternary soil deposits. Catena, 184, 104239.
Zeng, R., Rossiter, D. G., Yang, F., Li, D. C., Zhao, Y. G., & Zhang, G. L. (2017). How accurately can soil classes be allocated based on spectrally predicted physico-chemical properties? Geoderma, 303, 78–84.