Integrated crop and hydraulic modeling for precision irrigation: parameter estimation and sensitivity analysis (a review)

Document Type : Review Article

Authors

Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Abstract

Sustainable agriculture demands innovative strategies to optimize water use amid growing climatic uncertainties, resource limitations, and to bolster the resilience of farming systems worldwide in the face of climate change. This review provides a critical synthesis of state-of-the-art modeling approaches that integrate crop growth dynamics with soil hydraulic processes to support precision irrigation management. Emphasizing the vadose zone's central role as the critical interface governing soil-plant-water interactions, the paper examines a suite of widely used, process-based crop models (e.g., WOFOST, CERES, AquaCrop, DSSAT, APSIM) alongside specialized hydrological models (e.g., HYDRUS, SWAP, SWAT). It highlights their synergistic capability to simulate the complex, nonlinear feedback between root water uptake, soil moisture dynamics, evapotranspiration, and solute transport, which is fundamental for predicting crop water requirements and responses to irrigation. The primary challenge for this approach is the accurate determination of often unknown or highly variable soil hydraulic and crop parameters. This review demonstrated that 1) Advanced inverse modeling techniques provide a powerful alternative to direct measurements by using optimization algorithms to estimate critical parameters from field data. 2) Sensitivity analysis (both local and global) is indispensable for evaluating model robustness, identifying influential parameters, and mitigating calibration issues like equifinality. 3) Well-calibrated, integrated models enable a robust, physically sound framework for generating site-specific irrigation schedules, moving beyond traditional homogeneous management. We also identify key challenges, including data scarcity and computational demands. To address these, we advocate for the future development of quasi-3D hybrid modeling platforms that leverage high-resolution data from easily available resources, laboratories, remote sensing, and IoT networks. This integrative approach holds significant promise for advancing next-generation precision irrigation, enhancing water use efficiency, and strengthening global agricultural resilience.

Keywords

Main Subjects


Abbasi, F., Feyen, J., van Genuchten, M.T., 2004. Two-dimensional simulation of water flow and solute transport below furrows: model calibration and validation. J. Hydrol., 290, 63-79.
Abbasi, F., Šimůnek, J., Feyen, J., van Genuchten, M.T., Shouse, P.J., 2003. Simultaneous inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: Homogeneous soil. T. ASAE., 46, 1085-1095.
Abit, S.M., Amoozegar, A., Vepraskas, M.J., Niewoehner, C.P., 2008. Solute transport in the capillary fringe and shallow groundwater: Field evaluation. Vadose Zone J., 7, 890-898.
Abrahamsen, P., Hansen, S., 2000. Daisy: an open soil-crop-atmosphere system model. Environ Modell Softw., 15, 313-330.
Aggarwal, P.K., Kalra, N., Chander, S., Pathak, H., 2006. InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agr Syst., 89, 1-25.
Ahmed, Z., Gui, D., Murtaza, G., Yunfei, L., Ali, S., 2023. An overview of smart irrigation management for improving water productivity under climate change in drylands. Agro., 13, 2113.
Araya, A., Hoogenboom, G., Luedeling, E., Hadgu, K.M., Kisekka, I., Martorano, L.G., 2015. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agr Forest Meteorol., 214, 252-265.
Arnold, J.G., Allen, P.M., Bernhardt, G., 1993. A Comprehensive Surface-Ground water Flow Model. J. Hydrol., 142, 47-69.
Baldioli, M., Engel, T., Haberbosch, C., Kloecking, B., Wang, E., Priesack, E., Schaaf, T., Sperr, C., Gayler, S., 1994. Expert N, Ein Baukastensystem zur Simulation der Stickstoffdynamik in Boden und Pflanze. Version 1.0. Bodenoekologie, Neuherberg, Germany.
Bardossy, A., Li, J., 2008. Geostatistical interpolation using copulas. Water Resour Res., 44.
Bastiaanssen, W.G.M., Allen, R.G., Droogers, P., D’Urso, G., Steduto, P., 2004. Inserting man’s irrigation and drainage wisdom into soil water flow models and bringing it back out: how far have we progressed?, in: Feddes, R.A., de Rooij, G.H., van Dam, J.C. (Eds.), Unsaturated-zone Modeling: Progress, Challenges and Applications, Wageningen, the Netherland, pp. 263-299.
Botula, Y.-D., Van Ranst, E., Cornelis, W.M., 2014. Pedotransfer functions to predict water retention for soils of the humid tropics: a review. Revista Brasileira de Ciência do Solo., 38, 679-698.
Brooking, I.R., Jamieson, P.D., Porter, J.R., 1995. The Influence of Daylength on Final Leaf Number in Spring Wheat. Field Crop Res., 41, 155-165.
Brosten, T.R., Day-Lewis, F.D., Schultz, G.M., Curtis, G.P., Lane Jr, J.W., 2011. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity. J. Appl. Geophys., 73, 323-335.
Brown, D.M., , 1969. Heat units for corn in southern Ontario. Ontario Ministry of Agriculture and Food, Factsheet Agdex l1/31, Toronto, p. 4 pp.
Brown, H.E., Huth, N., Holzworth, D., 2011. A potato model built using the APSIM Plant.NET Framework. 19th International Congress on Modelling and Simulation (Modsim2011)., 961-967.
Brun, R., Reichert, P., Kunsch, H.R., 2001. Practical identifiability analysis of large environmental simulation models. Water Resour Res 37, 1015-1030.
Bultot, F., Dupriez, G.L., 1976. Conceptual Hydrological Model for an Average-Sized Catchment-Area .1. Concepts and Relationships. J. Hydrol., 29, 251-272.
Carrera-Hernández, J.J., Smerdon, B.D., Mendoza, C.A., 2012. Estimating groundwater recharge through unsaturated flow modelling: Sensitivity to boundary conditions and vertical discretization. J. Hydrol.,  452–453, 90-101.
Celia, M.A., Binning, P., 1992. A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour Res., 28, 2819-2828.
Chaplot, V., Jewitt, G., Lorentz, S., 2011. Predicting plot-scale water infiltration using the correlation between soil apparent electrical resistivity and various soil properties. Phys Chem Earth., 36, 1033-1042.
Chaplot, V., Lorentz, S., Podwojewski, P., Jewitt, G., 2010. Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity. Geoderma., 157, 154-164.
Chopart, J.L., Mezino, M., Aure, F., Le Mezo, L., Mete, M., Vauclin, M., 2007. OSIRI: A simple decision-making tool for monitoring irrigation of small farms in heterogeneous environments. Agr Water Manage., 87, 128-138.
Chou, I.-C., Voit, E.O., 2009. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical biosciences., 219, 57-83.
Coppola, A., Basile, A., Comegna, A., Lamaddalena, N., 2009. Monte Carlo analysis of field water flow comparing uni- and bimodal effective hydraulic parameters for structured soil. J. Contam. Hydrol., 104, 153-165.
Cornelis, W.M., Khlosi, M., Hartmann, R., Van Meirvenne, M., De Vos, B., 2005. Comparison of unimodal analytical expressions for the soil-water retention curve. Soil Sci Soc Am J., 69, 1902-1911.
Cosentini, R.M., Della Vecchia, G., Foti, S., Musso, G., 2012. Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography. Geotechnique., 62, 583-594.
Crawford, N.H., Burges, J.S., 1966. Digital simulation in hydrology stanford watershed model. Department Civil Engineering, Stanford university, USA.
Dafflon, B., Irving, J., Holliger, K., 2009. Use of high-resolution geophysical data to characterize heterogeneous aquifers: Influence of data integration method on hydrological predictions. Water Resour Res., 45.
Darouich, H.M., Pedras, C.M.G., Goncalves, J.M., Pereira, L.S., 2014. Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosyst Eng., 122, 74-90.
De Pauw, D., 2005. Optimal Experimental Design for Calibration of Bioprocess Models: a Validated Software Toolbox. Ghent university, Ghent, Belgium, p. 246.
Diersch, H.J.G., Kolditz, O., 1998. Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv Water Resour., 21, 401-425.
Dirksen, C., Kool, J.B., Koorevaar, P., Genuchten, M.T., 1993. HYSWASOR — Simulation Model of Hysteretic Water and Solute Transport in the Root Zone, in: Russo, D., Dagan, G. (Eds.), Water Flow and Solute Transport in Soils. Springer Berlin Heidelberg, pp. 99-122.
Dogrul, E.C., 2007. Integrated Water Flow Model (IWFM v3.0). User's manual Hydrology Development Unit, Modeling Support Branch California.
Doolittle, J.A., Brevik, E.C., 2014. The use of electromagnetic induction techniques in soils studies. Geoderma., 223, 33-45.
Elmaloglou, S., Malamos, N., 2003. A method to estimate soil-water movement under a trickle surface line source, with water extraction by roots. Irrig Drain 52, 273-284.
Fang, Q., Ma, L., Yu, Q., Ahuja, L.R., Malone, R.W., Hoogenboom, G., 2010. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain. Agr Water Manage., 97, 1165-1174.
FAO, 2023. The State of Food and Agriculture 2023–Revealing the true cost of food to transform agrifood systems. Rome.
Farzamian, M., Santos, F.A.M., Khalil, M.A., 2015. Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. Journal of Applied Geophysics 112, 175-189.
Fekete, B.M., Vörösmarty, C.J., Grabs, W., 1999. Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances, 2 ed, Koblenz, Germany.
Feng, Z., Miao, Q., Shi, H., Gonçalves, J.M., Li, X., Feng, W., Yan, J., Yu, D., Yan, Y., 2025. AquaCrop model-based sensitivity analysis of soil salinity dynamics and productivity under climate change in sandy-layered farmland. Agri. Water Manage., 307, 109244.
Fenicia, F., Kavetski, D., Savenije, H.H.G., Pfister, L., 2016. From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions. Water Resources Resea., 52, 954-989.
Finke, P.A., 2012. On digital soil assessment with models and the Pedometrics agenda. Geoderma., 171, 3-15.
Finke, P.A., Hutson, J.L., 2008. Modelling soil genesis in calcareous loess. Geoderma 145, 462-479.
Fodor, N., Sandor, R., Orfanus, T., Lichner, L., Rajkai, K., 2011. Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma., 165, 60-68.
Gaiser, T., Perkons, U., Kupper, P.M., Kautz, T., Uteau-Puschmann, D., Ewert, F., Enders, A., Krauss, G., 2013. Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation. Ecol Model., 256, 6-15.
Gao, L.Z., Jin, Z.Q., Huang, Y., Zhang, L.Z., 1992. Rice Clock Model - a Computer-Model to Simulate Rice Development. Agr Forest Meteorol 60, 1-16.
Geerts, S., Raes, D., Garcia, M., 2010. Using AquaCrop to derive deficit irrigation schedules. Agr Water Manage., 98, 213-216.
George, B.A., Shende, S.A., Raghuwanshi, N.S., 2000. Development and testing of an irrigation scheduling model. Agr Water Manage 46, 121-136.
Ghonchepour, D., Sadoddin, A., Bahremand, A., Croke, B., Jakeman, A., Salmanmahiny, A., 2021. A methodological framework for the hydrological model selection process in water resource management projects. Natural Resource Modeling 34, e12326.
Gobin, A., 2010. Modelling climate impacts on crop yields in Belgium. Clim Res 44, 55-68.
Gongalves, J.M., Pereira, L.S., Fang, S.X., Dong, B., 2007. Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River basin. Agr Water Manage., 94, 93-108.
Gooley, L., Huang, J., Page, D., Triantafilis, J., 2014. Digital soil mapping of available water content using proximal and remotely sensed data. Soil Use Manage., 30, 139-151.
Gumiere, S.J., Lafond, J.A., Hallema, D.W., Périard, Y., Caron, J., Gallichand, J., 2014. Mapping soil hydraulic conductivity and matric potential for water management of cranberry: Characterisation and spatial interpolation methods. Biosyst Eng., 128, 29-40.
Gwenzi, W., Hinz, C., Holmes, K., Phillips, I.R., Mullins, I.J., 2011. Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem. Geoderma., 166, 43-56.
Healy, R.W., Essaid, H.I., 2012. vs2di: Model use, calibration, and validation. T Asabe 55, 1249-1260.
Hoffmann, F., Beinhauer, R., Dadoun, F., 1993. Soil-Temperature Model for Ceres and Similar Crop Models. J Agron Crop Sci., 170, 56-65.
Hoogenboom, G., Jones, J.W., Boote, K.J., 1992. Modeling the growth, development and yield of grain legumes using SOYGRO, PNUTGRO and BEANGRO: a review, Transactionsof the ASAE.
Hooijer, A.A., van der Wal, T., 1994. CGMS version 3.1, user manual, Technical Document 15.1, DLO Winand Staring Centre, Wageningen.
Hopmans, J.W., Šimůnek, J., Romano, N., Durner, W., 2002. Simultaneous determination of water transmission and retention properties. Inverse Methods, in: Dane, J.H., Topp, G.C. (Eds.), Method of soil analysis. Part 4. Physical methods. Soil Science Society of America Book Series, Madison, USA, pp. 963-1008.
Horta, A., Pereira, M.J., Goncalves, M., Ramos, T., Soares, A., 2014. Spatial modelling of soil hydraulic properties integrating different supports. J. Hydrol., 511, 1-9.
Hu, X., Shi, L., Lin, G., Lin, L., 2021. Comparison of physical-based, data-driven and hybrid modeling approaches for evapotranspiration estimation. J. Hydrol., 601, 126592.
Hupet, F., Lambot, S., Javaux, M., Vanclooster, M., 2002. On the identification of macroscopic root water uptake parameters from soil water content observations. Water Resour Res., 38.
Huygen, J., 1992. SWACROP2, a quasi-two-dimensional crop growth & soil water flow simulation model. User's guide. . WAU, Department of Water Resources, DLO Winand Staring Centre, Wageningen.
Iman, R.L., Helton, J.C., 1988. An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer-Models. Risk Anal 8, 71-90.
Jačka, L., Pavlásek, J., Kuráž, V., Pech, P., 2014. A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma., 219–220, 82-88.
Jacques, D., Smith, C., Simunek, J., Smiles, D., 2012. Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange. Journal of Contaminant Hydrol., 142, 109-125.
Jajarmizadeh, M., Harun, S., Salarpour, M., 2012. A review on theoretical consideration and types of models in hydrology. J Environmental Science and Technology., 5, 249-261.
Jansson, P.E., Karlberg, L., 2001. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere Systems. Department of Civil and Environmental Engineering, Royal Institute of Technology, Stockholm, p. 321.
Jarvis, N.J., Larsson, M.H., 1998. The MACRO model (Version 4.1). Technical description. Department of Soil Sciences, Swedish University of Agricultural Sciences, Uppsala.
Jenkins, M., Block, D.E., 2024. A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems. Agron., 14, 1355.
Jonard, F., Weihermuller, L., Schwank, M., Jadoon, K.Z., Vereecken, H., Lambot, S., 2015. Estimation of Hydraulic Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing. Ieee T Geosci Remote 53, 3095-3109.
Jones, C.A., Kiniry, J.R., 1986. CERES-Maize: A Simulation Model of Maize Growth and Development, College Station, Texas, pp. pp. 66-75
Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, R.E., Janssen, S., 2017. Brief history of agricultural systems modeling. Agri systems., 155, 240-254.
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron., 18, 267-288.
Kelishadi, H., Mosaddeghi, M.R., Hajabbasi, M.A., Ayoubi, S., 2014. Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma., 213, 426-434.
Kloss, S., Pushpalatha, R., Kamoyo, K.J., Schutze, N., 2012. Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability. Water Resour Manag., 26, 997-1014.
Kourgialas, N.N., Karatzas, G.P., 2015. A modeling approach for agricultural water management in citrus orchards: cost-effective irrigation scheduling and agrochemical transport simulation. Environ Monit Assess., 187, 462.
Kundathil, C., Viswan, H., Kumar, P., 2023. Crop simulation modeling: A strategic tool in crop management. Journal of Food Chemical Nanotechnology 9, S342-S358.
Kuznetsov, M., Yakirevich, A., Pachepsky, Y.A., Sorek, S., Weisbrod, N., 2012. Quasi 3D modeling of water flow in vadose zone and groundwater. J Hydrol 450, 140-149.
Lakhiar, I.A., Yan, H., Zhang, C., Wang, G., He, B., Hao, B., Han, Y., Wang, B., Bao, R., Syed, T.N., 2024. A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture 14, 1141.
Lesmes, D., Friedman, S., 2005. Relationships between the Electrical and Hydrogeological Properties of Rocks and Soils, in: Rubin, Y., Hubbard, S. (Eds.), Hydrogeophysics. Springer Netherlands, pp. 87-128.
Levenberg, K., 1944. A method for the solution of certain problems in least squares. Quart. Appl. Math 2, 164-168.
Li, N., McLaughlin, D., Kinzelbach, W., Li, W.P., Dong, X.G., 2015. Using an ensemble smoother to evaluate parameter uncertainty of an integrated hydrological model of Yanqi basin. J Hydrol 529, 146-158.
Li, X.P., Zhang, J.B., Liu, J.T., Liu, J.L., Zhu, A.N., Lv, F., Zhang, C.Z., 2011. A modified checkbook irrigation method based on GIS-coupled model for regional irrigation scheduling. Irrigation Sci 29, 115-126.
Li, Y., Kinzelbach, W., Zhou, J., Cheng, G.D., Li, X., 2012. Modelling irrigated maize with a combination of coupled-model simulation and uncertainty analysis, in the northwest of China. Hydrol Earth Syst Sc 16, 1465-1480.
Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A Simple Hydrologically Based Model of Land-Surface Water and Energy Fluxes for General-Circulation Models. J Geophys Res-Atmos 99, 14415-14428.
Liu, H., Kibireva, A., Meurer, M., Bergs, T., 2023. An inverse method for automatic determination of material models for metal cutting based on multi-objective optimization. The International Journal of Advanced Manufacturing Technology 129, 3353-3374.
Mailhol, J.C., Ruelle, P., Revol, P., 1996. PILOTE: Un modele operationnel pour deceler l'apparition du stress hydrique Workshop on Crop-Water-Environment Models, 16th International Congress on Irrigation and Drainage (ICID-CIID). 47th International Executive Council Meeting, Cairo International Conference Centre Cairo, Egypt, pp. 209-222.
Markstrom, S.L., Niswonger, R.G., Regan, R.S., Prudic, D.E., Barlow, P.M., 2008. GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods 6-D1, p. 240.
Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431-441.
Mawer, C., Knight, R., Kitanidis, P.K., 2015. Relating relative hydraulic and electrical conductivity in the unsaturated zone. Water Resour Res 51, 599-618.
McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holzworth, D.P., Freebairn, D.M., 1996. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agr Syst 50, 255-271.
McDonald, M.G., Harbaugh, A.W., 1983. A modular three-dimensional finite-difference ground-water flow model. Open-File Report 83-875. U.S. Geological Survey.
Mertens, J., Madsen, H., Kristensen, M., Jacques, D., Feyen, J., 2005. Sensitivity of soil parameters in unsaturated zone modelling and the relation between effective, laboratory and in situ estimates. Hydrological Processes 19, 1611-1633.
Miháliková, M., Başkan, O., Dengiz, O., 2015. Capability of different interpolation models and pedotransfer functions to estimate soil hydraulic properties in Büyükçay Watershed. Environ Earth Sci 74, 2425-2437.
Mirus, B.B., Perkins, K.S., Nimmo, J.R., Singha, K., 2009. Hydrologic Characterization of Desert Soils with Varying Degrees of Pedogenesis: 2. Inverse Modeling for Effective Properties. Vadose Zone J 8, 496-509.
Mohanty, B.P., 2013. Soil Hydraulic Property Estimation Using Remote Sensing: A Review. Vadose Zone J 12.
Moreno, A., Ramos, T.B., Goncalves, M.C., Pereira, L.S., 2014. Estimating Soil Hydraulic Properties from Limited Data to Improve Irrigation Management in Agricultural Soils of Santiago Island, Cape Verde. Irrig Drain 63, 405-415.
Moroozeh, A.D., Bansouleh, B.F., Ghobadi, M., Ahmadpour, A., 2023. Assessment of DSSAT and AquaCrop models to simulate soybean and maize yield under water stress conditions. Spanish Journal of Agricultural Research 21, e1201-e1201.
Morris, M.D., 1991. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 33, 161-174.
Nendel, C., Berg, M., Kersebaum, K.C., Mirschel, W., Specka, X., Wegehenkel, M., Wenkel, K.O., Wieland, R., 2011. The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol Model 222, 1614-1625.
Neuman, S.P., Feddes, R.A., Bresler, E., 1974. Finite element simulation on flow in saturated-unsaturated soils considering water uptake by plants. Institute of Technology, Haifa, Israel.
Nguyen, P.M., De Pue, J., Le, K.V., Cornelis, W., 2015. Impact of regression methods on improved effects of soil structure on soil water retention estimates. Journal of Hydrology 525, 598-606.
Nimmo, J.R., Perkins, K.S., Schmidt, K.M., Miller, D.M., Stock, J.D., Singha, K., 2009. Hydrologic Characterization of Desert Soils with Varying Degrees of Pedogenesis: 1. Field Experiments Evaluating Plant-Relevant Soil Water Behavior. Vadose Zone J 8, 480-495.
Niswonger, R.G., Prudic, D.E., 2009. Comment on "Evaluating Interactions between Groundwater and Vadose Zone Using the HYDRUS-Based Flow Package for MODFLOW" by Navin Kumar C. Twarakavi, Jirka Simunek, and Sophia Seo. Vadose Zone J 8, 818-819.
Niu, Q.F., Fratta, D., Wang, Y.H., 2015. The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils. Journal of Hydrology 522, 475-487.
Noilhan, J., Planton, S., 1989. A Simple Parameterization of Land Surface Processes for Meteorological Models. Mon Weather Rev 117, 536-549.
Ostovari, Y., Asgari, K., Cornelis, W., 2015. Performance Evaluation of Pedotransfer Functions to Predict Field Capacity and Permanent Wilting Point Using UNSODA and HYPRES Datasets. Arid Land Research and Management 29, 383-398.
Parton, W.J., McKoewn, B., Kirchner, V., Ojima, D., 1992. User Manual for the CENTURY model.
Paudyal, G.N., Dasgupta, A., 1990. Irrigation Planning by Multilevel Optimization. J Irrig Drain E-Asce 116, 273-291.
PC-Agrar., 1994. Handbuch zum Stickstoff simulations modell "Hermes" Manual, PC-Agrar Informations- und Beratungsdienst,, p. 21.
Penning de Vries, F.W.T., Jansen, D.M., H.F.M., t.B., Bakema, A., 1989. Simulation of Ecophysiological Process of Growth in Several Annual Crops. 271.
Place, R.E., Brown, D.M., 1987. Modeling Corn Yields from Soil-Moisture Estimates - Description, Sensitivity Analysis and Validation. Agr Forest Meteorol 41, 31-56.
Raes, D., 2002. BUDGET - a soil water and salt balance model. Reference manual. K.U.Leuven, Department Land Management, Leuven, Belgium.
Raes, D., Steduto, P., Hsiao, T.C., Fereres, E., 2009. AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron J 101, 438-447.
Raman, H., Mohan, S., Rangacharya, N.C.V., 1992. Decision Support for Crop Planning during Droughts. J Irrig Drain E-Asce 118, 229-241.
Rauff, K.O., Bello, R., 2015. A review of crop growth simulation models as tools for agricultural meteorology. Agricultural Sciences 6, 1098-1105.
Rezaei, M., 2016. Characterization and modeling of water flow in sandy soils for irrigation optimization. Ghent University, Faculty of Bioscience Engineering, . Ghent, Ghent, Belgium.
Rezaei, M., De Pue, J., Seuntjens, P., Joris, I., Cornelis, W., 2017. Quasi 3D modelling of vadose zone soil-water flow for optimizing irrigation strategies: Challenges, uncertainties and efficiencies. Environmental Modelling & Software 93, 59-77.
Rezaei, M., Mousavi, S.R., Rahmani, A., Zeraatpisheh, M., Rahmati, M., Pakparvar, M., Mahjenabadi, V.A.J., Seuntjens, P., Cornelis, W., 2023. Incorporating machine learning models and remote sensing to assess the spatial distribution of saturated hydraulic conductivity in a light-textured soil. Computers and Electronics in Agriculture 209, 107821.
Rezaei, M., Seuntjens, P., Joris, I., Wesley Boënne, W., Van Hoey, S., Campling, P., Cornelis, W., 2016a. Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters. . Hydrology and Earth System Sciences 20, 487-503.
Rezaei, M., Seuntjens, P., Shahidi, R., Joris, I., Boënne, W., Al-Barri, B., Cornelis, W., 2016b. The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations. Journal of Hydrology 534, 251-265.
Rezaei, M., Shahbazi, K., Shahidi, R., Davatgar, N., Bazargan, K., Rezaei, H., Saadat, S., Seuntjens, P., Cornelis, W., 2021. How to relevantly characterize hydraulic properties of saline and sodic soils for water and solute transport simulations. Journal of Hydrology 598, 125777.
Richards, L.A., 1931. Capillary conduction of liqids through porous mediums. Journal of Applied Physics 1, 318-333.
Rocha, D., Abbasi, F., Feyen, J., 2006. Sensitivity analysis of soil hydraulic properties on subsurface water flow in furrows. J Irrig Drain E-Asce 132, 418-424.
Rosa, R.D., Paredes, P., Rodrigues, G.C., Alves, I., Fernando, R.M., Pereira, L.S., Allen, R.G., 2012. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agr Water Manage 103, 8-24.
Rossi, M., Manoli, G., Pasetto, D., Deiana, R., Ferraris, S., Strobbia, C., Putti, M., Cassiani, G., 2015. Coupled inverse modeling of a controlled irrigation experiment using multiple hydro-geophysical data. Advances in Water Resources 82, 150-165.
Russo, D., Bresler, E., Shani, U., Parker, J.C., 1991. Analyses of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology. Water Resour Res 27, 1361-1373.
Salemi, H., Soom, M.A.M., Lee, T.S., Mousavi, S.F., Ganji, A., KamilYusoff, M., 2011. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. Afr J Agr Res 6, 2204-2215.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S., 2008. Global sensitivity analysis. The Primer. John Wiley & Sons, West Sussex, England.
Sanaee-Jahromi, S., Feyen, J., Wyseure, G., Javan, M., 2001. Approach to the Evaluation of Undependable Delivery of Water in Irrigation Schemes. Irrigation and Drainage Systems 15, 197-213.
SARGUN, K., MOHAN, S., 2020. Modeling the crop growth-a review. Mausam 71, 103-114.
Saxton, K.E., Johnson, H.P., Shaw, R.H., 1974. Modeling evapo-transpiration and soil moisture. Transactions of American Society of Agricultural Engineers 17, 673-677.
Schindler, U., Durner, W., von Unold, G., Müller, L., 2010. Evaporation Method for Measuring Unsaturated Hydraulic Properties of Soils: Extending the Measurement Range Soil Sci Soc Am J 74.
Schmugge, T., 2013. Estimating Near-Surface Soil Hydraulic Properties with Microwave Remote Sensing, Assessment of Non-Point Source Pollution in the Vadose Zone. American Geophysical Union, pp. 217-222.
Schwartz, R.C., Evett, S.R., 2003. Conjunctive Use of Tension Infiltrometry and Time-Domain Reflectometry for Inverse Estimation of Soil Hydraulic Properties. Vadose Zone J 2, 530-538.
Schwen, A., Zimmermann, M., Bodner, G., 2014. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations. Journal of Hydrology 516, 169-181.
Semenov, M.A., 2009. Impacts of climate change on wheat in England and Wales. J R Soc Interface 6, 343-350.
Shang, S.H., Mao, X.M., 2006. Application of a simulation based optimization model for winter wheat irrigation scheduling in North China. Agr Water Manage 85, 314-322.
Sherlock, M.D., McDonnell, J.J., Curry, D.S., Zumbuhl, A.T., 2002. Physical controls on septic leachate movement in the vadose zone at the hillslope scale, Putnam County, New York, USA. Hydrol Process 16, 2559-2575.
Shin, Y., Mohanty, B.P., Ines, A.V.M., 2013. Estimating Effective Soil Hydraulic Properties Using Spatially Distributed Soil Moisture and Evapotranspiration. Vadose Zone J 12.
Šimůnek, J., Brunetti, G., Jacques, D., van Genuchten, M.T., Šejna, M., 2024a. Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone Journal n/a, e20310.
Šimůnek, J., Brunetti, G., Jacques, D., van Genuchten, M.T., Šejna, M., 2024b. Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone Journal 23, e20310.
Šimůnek, J., Hopmans, J.W., 2002. Parameter optimization and nonlinear fitting, Method of soil analysis. Part 4. Physical methods ( Dane, J.H., and  Topp, G.C. Eds.). Soil Science Society of America Book Series, pp. 139-157.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.T., 2013. The Hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.16, HYDRUS software series 3 Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, p. 308.
Šimůnek, J., Šejna, M., van Genuchten, M.T., 2006a. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, User Manual, Version 1.0. PC Progress, Prague, Czech Republic, p. 161.
Šimůnek, J., van Genuchten, M.T., Sejna, M., 2012. Hydrus: Model use, calibration, and validation. T Asabe 55, 1261-1274.
Šimůnek, J., van Genuchten, M.T., Šejna, M., 2006b. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual, Version 1.0. PC Progress, Prague, Czech Republic p. 241.
Šimůnek, J., Vogel, T., van Genuchten, M.T., 1994. The SWMS-2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media. Version 1.21. USDA-ARS U.S. Salinity Laboratory, Riverside, California.
Šimůnek, J., Wendroth, O., van Genuchten, M.T., 1999. Estimating unsaturated soil hydraulic properties from laboratory tension disc infiltrometer experiments. Water Resour Res 35, 2965-2979.
Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K., Venevsky, S., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9, 161-185.
Smith, M., 1991. CROPWAT: a computer program for irrigation planning and management. . FAO Land and Water Development Division, FAO, Rome.
Sobol, I.M., 1993. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computation 1, 407-414.
Spear, R.C., Hornberger, G.M., 1980. Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Research 14, 43-49.
Spitters, C.J.T., van Keulen, H., van Kraalingen, D.W.G., 1989. A simple and universal crop growth simulator: SUCROS87, in: Rabbinge, R., Ward, S.A., van Laar, H.H. (Eds.), Simulation and systems management in crop protection, Wageningen, the Netherlands, pp. 147-181.
Stockle, C.O., Martin, S.A., Campbell, G.S., 1994. Cropsyst, a Cropping Systems Simulation-Model - Water Nitrogen Budgets and Crop Yield. Agr Syst 46, 335-359.
Sudduth, K.A., Myers, D.B., Kitchen, N.R., Drummond, S.T., 2013. Modeling soil electrical conductivity-depth relationships with data from proximal and penetrating ECa sensors. Geoderma 199, 12-21.
Teixeira, J.L., Pereira, L.S., 1992. ISAREG, an irrigation scheduling model. ICID Bulletin 41, 29-48.
Teixeira, W.G., Ceddia, M.B., Ottoni, M.V., Donnagema, G.K., 2014. Application of Soil Physics in Environmental Analyses, 1 ed. Springer, Springer International Publishing Switzerland.
Therrien, R., R.G. McLaren, E.A. Sudicky, and S.M. Panday, fully-integrated, S.A.t.-d.n.m.d., Groundwater, s.a.s.f.o.a.s.t.U.s.g., Simula, 2009. HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport: User’s guide. Groundwater Simulations Group, Waterloo, ON, Canada.
Tian, W., Li, X., Cheng, G.D., Wang, X.S., Hu, B.X., 2012. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation. Hydrol Earth Syst Sc 16, 4707-4723.
Toksoz, S., Kirkham, D., 1971. Steady drainage of layered soils. 1. theory. Journal of the Irrigation and Drainage Division, 1-18.
Tsuji, G.T., Uehara, G., Salas, S., 1994. DSSAT v3.0. University of Hawaii, Honolulu, Hawaii.
Umutoni, L., Samadi, V., 2024. Application of machine learning approaches in supporting irrigation decision making: A review. Agricultural Water Management 294, 108710.
van Dam, J.C., Huygen, J., Wesseling, J.G., 1997. Theory of SWAP version 2.0: simulation of water flow, solute transport and plant growth in the Soil- Water-Atmosphere-Plant environment. DLO Winand Staring Centre, Wageningen. Report / Wageningen Agricultural University, Department Water Resources.
van Genuchten, M.T., Naveira-Cotta, C., Skaggs, T.H., Raoof, A., Pontedeiro, E.M., 2014. The Use of Numerical Flow and Transport Models in Environmental Analyses, in: Teixeira, W.G., Ceddia, M.B., Ottoni, M.V., Donnagema, G.K. (Eds.), Application of Soil Physics in Environmental Analyses, 1 ed. Springer, Springer International Publishing Switzerland, pp. 349-376.
Van Keulen, H., Wolf, J., 1986. Modelling of agricultural production: weather, soils and crops. Pudoc, Wageningen. Simulation Monographs.
van Oijen, M., 1992. Evaluation of Breeding Strategies for Resistance and Tolerance to Late Blight in Potato by Means of Simulation. Neth J Plant Pathol 98, 3-11.
Vazifedoust, M., van Dam, J.C., Feddes, R.A., Feizi, M., 2008. Increasing water productivity of irrigated crops under limited water supply at field scale. Agr Water Manage 95, 89-102.
Verbist, K.M.J., Pierreux, S., Cornelis, W.M., McLaren, R., Gabriels, D., 2012. Parameterizing a coupled surface-subsurface three-dimensional soil hydrological model to evaluate the efficiency of a runoff water harvesting technique. Vadose Zone J 11.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., van Genuchten, M.T., 2010. Using Pedotransfer Functions to Estimate the van Genuchten-Mualem Soil Hydraulic Properties: A Review. Vadose Zone J 9, 795-820.
Verma, P., Singh, P., George, K.V., Singh, H.V., Devotta, S., Singh, R.N., 2009. Uncertainty analysis of transport of water and pesticide in an unsaturated layered soil profile using fuzzy set theory. Appl Math Model 33, 770-782.
Violino, S., Figorilli, S., Ferrigno, M., Manganiello, V., Pallottino, F., Costa, C., Menesatti, P., 2023. A data-driven bibliometric review on precision irrigation. Smart Agricultural Technology 5, 100320.
Vrugt, J.A., Schoups, G., Hopmans, J.W., Young, C., Wallender, W.W., Harter, T., Bouten, W., 2004. Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization. Water Resour Res 40.
Vrugt, J.A., Stauffer, P.H., Wohling, T., Robinson, B.A., Vesselinov, V.V., 2008. Inverse modeling of subsurface flow and transport properties: A review with new developments. Vadose Zone J 7, 843-864.
Wang, J.H., Yang, H., Li, L., Gourley, J.J., Sadiq, I.K., Yilmaz, K.K., Adler, R.F., Policelli, F.S., Habib, S., Irwn, D., Limaye, A.S., Korme, T., Okello, L., 2011. The coupled routing and excess storage (CREST) distributed hydrological model. Hydrolog Sci J 56, 84-98.
Weir, A.H., Bragg, P.L., Porter, J.R., Rayner, J.H., 1984. A Winter-Wheat Crop Simulation-Model without Water or Nutrient Limitations. J Agr Sci 102, 371-382.
Wigmosta, M.S., Vail, L.W., Lettenmaier, D.P., 1994. A Distributed Hydrology-Vegetation Model for Complex Terrain. Water Resour Res 30, 1665-1679.
Williams, J.R., Dyke, P.T., Jones, C.A., 1983. EPIC: a model for assessing the effects of erosion on soil productivity. In Analysis of Ecological Systems: State-of-the-Art in Ecological Modeling. , in: Laurenroth, W.K.e.a. (Ed.), Elsevier, Amsterdam, pp, pp. 553-572.
Wöhling, T., Schütze, N., Heinrich, B., Šimůnek, J., Barkle, G.F., 2009. Three-Dimensional Modeling of Multiple Automated Equilibrium Tension Lysimeters to Measure Vadose Zone Fluxes. Vadose Zone Journal 8, 1051-1063.
Wöhling, T., Vrugt, J.A., 2008. Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models. Water Resour Res 44.
Wöhling, T., Vrugt, J.A., Barkle, G.F., 2008. Comparison of three multiobjective optimization algorithms for inverse modeling of vadose zone hydraulic properties. Soil Sci Soc Am J 72, 305-319.
Wolf, J., 2012. LINGRA-N a grassland model for potential, water limited and N limited conditions (FORTRAN). Wageningen University, Wageningen, The Netherlands.
Wollschlager, U., Pfaff, T., Roth, K., 2009. Field-scale apparent hydraulic parameterisation obtained from TDR time series and inverse modelling. Hydrol Earth Syst Sc 13, 1953-1966.
Zaradny, H., Feddes, R.A., 1979. Calculation of Non-Steady Flow Towards a Drain in Saturated-Unsaturated Soil by Finite-Elements. Agr Water Manage 2, 37-53.
Zhang, H., Kurtz, W., Kollet, S., Vereecken, H., Franssen, H.-J.H., 2018. Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model. Advances in water resources 111, 224-238.
Zhu, Y., Shi, L.S., Lin, L., Yang, J.Z., Ye, M., 2012. A fully coupled numerical modeling for regional unsaturated-saturated water flow. J Hydrol 475, 188-203.
 

تحت نظارت وف ایرانی